X-ray-based techniques are a powerful tool in structural biology but the radiation-induced chemistry that results can be detrimental and may mask an accurate structural understanding. In the crystallographic case, cryocooling has been employed as a successful mitigation strategy but also has its limitations including the trapping of non-biological structural states. Crystallographic and solution studies performed at physiological temperatures can reveal otherwise hidden but relevant conformations, but are limited by their increased susceptibility to radiation damage. In this case, chemical additives that scavenge the species generated by radiation can mitigate damage but are not always successful and the mechanisms are often unclear. Using a protein designed to undergo a large-scale structural change from breakage of a disulfide bond, radiation damage can be monitored with small-angle X-ray scattering. Using this, we have quantitatively evaluated how three scavengers commonly used in crystallographic experiments - sodium nitrate, cysteine, and ascorbic acid - perform in solution at 10°C. Sodium nitrate was the most effective scavenger and completely inhibited fragmentation of the disulfide bond at a lower concentration (500 µM) compared with cysteine (∼5 mM) while ascorbic acid performed best at 5 mM but could only reduce fragmentation by ∼75% after a total accumulated dose of 792 Gy. The relative effectiveness of each scavenger matches their reported affinities for solvated electrons. Saturating concentrations of each scavenger shifted fragmentation from first order to a zeroth-order process, perhaps indicating the direct contribution of photoabsorption. The SAXS-based method can detect damage at X-ray doses far lower than those accessible crystallographically, thereby providing a detailed picture of scavenger processes. The solution results are also in close agreement with what is known about scavenger performance and mechanism in a crystallographic setting and suggest that a link can be made between the damage phenomenon in the two scenarios. Therefore, our engineered approach might provide a platform for more systematic and comprehensive screening of radioprotectants that can directly inform mitigation strategies for both solution and crystallographic experiments, while also clarifying fundamental radiation damage mechanisms.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8415334PMC
http://dx.doi.org/10.1107/S1600577521004045DOI Listing

Publication Analysis

Top Keywords

radiation damage
16
solution crystallographic
8
disulfide bond
8
crystallographic experiments
8
sodium nitrate
8
ascorbic acid
8
damage
7
crystallographic
6
radiation
5
solution
5

Similar Publications

Human papilloma virus-negative head and neck squamous cell carcinoma (HNSCC) frequently harbors 11q13 amplifications. Among the oncogenes at this locus, CCND1 and ANO1 are linked to poor prognosis; however, their individual roles in treatment resistance remain unclear. The impact of Cyclin D1 and Ano1 overexpression on survival was analyzed using the TCGA HNSCC dataset and a Charité cohort treated with cisplatin (CDDP)-based radiochemotherapy.

View Article and Find Full Text PDF

Ultraviolet radiation (UV) causes certain side effects to the skin, and their accumulation to a certain extent can lead to accelerated aging of the skin. Recent studies suggest that α-arbutin may be useful in various disorders such as hyperpigmentation disorders, wound healing, and antioxidant activity. However, the role of α-arbutin in skin photodamage is unclear.

View Article and Find Full Text PDF

Investigation of the Ocular Response and Corneal Damage Threshold of Exposure to 28 GHz Quasi-millimeter Wave Exposure.

Health Phys

January 2025

Division of Vision Research for Environmental Health, Medical Research Institute and Department of Ophthalmology, Kanazawa Medical University, Kahoku, Japan.

Electromagnetic radiation energy at millimeter wave frequencies, typically 30 GHz to 300 GHz, is ubiquitously used in society in devices for telecommunications; radar and imaging systems for vehicle collision avoidance, security screening, and medical equipment; scientific research tools for spectroscopy; industrial applications for non-destructive testing and precise measurement; and military and defense applications. Understanding the biological effects of this technology is essential. We have been investigating ocular responses and damage thresholds comparing various frequencies using rabbit eyes and dedicated experimental apparatus.

View Article and Find Full Text PDF

Pulsed Ultrasound-Mediated Drug Delivery Enhancement Through Human Sclera.

Transl Vis Sci Technol

January 2025

Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China.

Purpose: The purpose of this study was to characterize whether pulsed ultrasound (PUS) affects transscleral drug delivery.

Methods: Fluorescein sodium (NaF, 376 Da) and fluorescein isothiocyanate-conjugated dextran 40 (FD-40, 40 kDa) were used as model drugs. Human sclera grafts were placed in modified Franz diffusion cells and were treated by PUS (1 megahertz [MHz], 0.

View Article and Find Full Text PDF

Purpose: To assess the safety of acoustic radiation force optical coherence elastography in the crystalline lens in situ.

Methods: Acoustic radiation force (ARF) produced by an immersion single-element ultrasound transducer (nominal frequency = 3.5 MHz) was characterized using a needle hydrophone and used for optical coherence elastography (OCE) of the crystalline lens.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!