While transition-metal dichalcogenide (TMD)-based moiré materials have been shown to host various correlated electronic phenomena, topological states have not been experimentally observed until now [T. Li et al., Quantum anomalous Hall effect from intertwined moiré bands. arXiv [Preprint] (2021). https://arxiv.org/abs/2107.01796 (Accessed 5 July 2021)]. In this work, using first-principle calculations and continuum modeling, we reveal the displacement field-induced topological moiré bands in AB-stacked TMD heterobilayer [Formula: see text]/[Formula: see text] Valley-contrasting Chern bands with nontrivial spin texture are formed from interlayer hybridization between [Formula: see text] and [Formula: see text] bands of nominally opposite spins. Our study establishes a recipe for creating topological bands in AB-stacked TMD bilayers in general, which provides a highly tunable platform for realizing quantum-spin Hall and interaction-induced quantum anomalous Hall effects.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8433558 | PMC |
http://dx.doi.org/10.1073/pnas.2112673118 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!