Effect of RGD functionalization and stiffness of gellan gum hydrogels on macrophage polarization and function.

Mater Sci Eng C Mater Biol Appl

Department of Materials Science & Engineering, Iowa State University, Ames, IA 50011, USA; Department of Chemical & Biological Engineering, Iowa State University, Ames, IA 50011, USA. Electronic address:

Published: September 2021

Macrophages, the primary effector cells in the immune response, respond rapidly to the physical or chemical properties of biomaterial implants. Balanced macrophage polarization, phagocytosis, and migration would be beneficial for implant success and tissue regeneration. Here, we investigated macrophage phenotypic changes, phagocytosis, and migration in response to RGD functionalized surfaces and changes in stiffness of gellan gum hydrogels. We also inhibited the RhoA pathway. The compressive moduli ranged from ~5 to 30 kPa. Cell population and cell spreading area of classically activated macrophages (M(LPS)) and alternatively activated macrophages (M(IL-4)) are promoted on RGD modified hydrogel. ROCK inhibitor induced the opposite effect on the cell spreading of both M(LPS) and M(IL-4) macrophages on RGD modified hydrogels. Macrophage polarization was found to be stiffness-driven and regulated by the RGD motif and blocked by the RhoA pathway. RGD functionalized hydrogel shifted M(IL-4) cells toward a more pro-inflammatory phenotype, while ROCK inhibition shifted M(LPS) cells to a more anti-inflammatory phenotype. Both M(LPS) and M(IL-4) cells on untreated hydrogels shifted to a more pro-inflammatory phenotype in the presence of aminated-PS particles. The RGD motif had a significant impact on cellular uptake, whereas cellular uptake was stiffness driven on untreated hydrogels. Cell migration of M(LPS) and M(IL-4) cells had ROCK-dependent migration. The stiffness of gellan gum hydrogels had no influence on macrophage migration rate. Collectively, our results showed that gellan gum hydrogels can be used to direct immune response, macrophage infiltration, and phagocytosis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.msec.2021.112303DOI Listing

Publication Analysis

Top Keywords

gellan gum
16
gum hydrogels
16
stiffness gellan
12
macrophage polarization
12
mlps mil-4
12
mil-4 cells
12
hydrogels macrophage
8
immune response
8
phagocytosis migration
8
rgd functionalized
8

Similar Publications

Effective wound healing requires biocompatible and functional wound dressings. This study explores the synergistic potential of gellan gum (GG), known for its exceptional gel-forming abilities, and acacia stingless bee honey (SBH), for its potent antioxidant properties, in developing advanced wound care solutions. GG hydrogel films incorporated with varying concentrations of SBH (v/v) at 10 % (GGSBH10), 15 % (GGSBH15), and 20 % (GGSBH20) were characterized.

View Article and Find Full Text PDF

Preparation of thermoresponsive & enzymatically crosslinkable gelatin-gellan gum bioink: A protein-polysaccharide hydrogel for 3D bioprinting of complex soft tissues.

Int J Biol Macromol

January 2025

Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials, ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, India. Electronic address:

Developing superior bioinks present several challenges in achieving ideal properties such as biocompatibility, viscosity, degradation rates & mechanical properties which are required to make functional tissue constructs. Various attempts have been made to prepare excellent bioink compositions that are suitable to address the above challenges. Herein, a versatile combination of gelatin (GL) - gellan gum (GG) bioink was successfully formulated & the bioink 7.

View Article and Find Full Text PDF

Gellan-amino acid hydrogel-based bioreactor for optimizing the production of yeast metabolites.

Carbohydr Polym

March 2025

Biochemical Engineering Research & Process Development Centre (BERPDC), Institute of Microbial Technology (IMTECH), Council of Scientific and Industrial Research (CSIR), Sector-39A, Chandigarh 160036, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India. Electronic address:

Hydrogels mimic natural environments due to their hydrated, polymeric networks which are beneficial for microorganism growth. The substantial water content maintains a consistently moist environment, and porous structure of hydrogel promotes efficient nutrient transfer and cell distribution, offering advantages over traditional liquid bioreactors. While their application in cell immobilization for bioconversion is well-known, their use as a solid-state fermentation matrix remains unexplored.

View Article and Find Full Text PDF

Biocompatible dually reinforced gellan gum hydrogels with selective antibacterial activity.

Carbohydr Polym

March 2025

School of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, PR China. Electronic address:

The poor mechanics and functionality of natural-polymer hydrogels from gellan gum (GG) prohibit their practical application, despite the intrinsic thermo-reversible gelation nature, structural and quality consistency, biocompatibility, biodegradability and sustainability of microbial fermentation-produced GG. Herein, a dual-reinforcing strategy, i.e.

View Article and Find Full Text PDF

A water-soluble drug nanoparticle-loaded in situ gel for enhanced precorneal retention and its transduction mechanism of pharmacodynamic effects.

Int J Pharm

December 2024

Guangdong Provincial Key Laboratory for Research and Evaluation of Pharmaceutical Preparations, College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China. Electronic address:

Article Synopsis
  • Timolol maleate (TM) is commonly used to treat glaucoma, but traditional eye drops don't work well due to the eye's barriers.
  • Researchers created a new formulation using nanoparticles (NPs) and an in situ gel (ISG) system to improve drug delivery and retention.
  • The new formulation showed excellent safety, longer duration in the eye, and effectively lowered intraocular pressure for up to 12 hours, providing insights for future glaucoma treatments.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!