In the present study, new-layered inorganic/organic hybrid of silver/talc nanocomposites (Ag/Tlc-NPs) and its chitosan-capped derivative (Ag/Tlc/Csn NCs) were biochemically synthesized utilizing Lawsonia inermis L. extract. The silver nanoparticles (Ag NPs) were synthesized employing green method on the exterior surface layer of talc mineral as a solid substrate. The negatively charged surface layer of talc might function as templates and can attract the chitosan cations from a solution to yield a layered hybrid structure, whose inorganic phase is formed by Si-O-Ag bonds. Our results revealed that Ag NPs were formed on the exterior surface of talc with a diameter with size of 124-215 nm. In addition, cytotoxicity, in vitro antibacterial activity, and clinical effects of wound-healing ointments containing talc were investigated. The results implied the successful synthesis of Ag/Tlc/Csn NCs using the extract. The structures were safe up to 0.50 mg/mL. In vitro studies confirmed antioxidant and antibacterial properties of Ag/Tlc/Csn NCs. In sum, our findings showed that the ointments improve wound healing process by inducing an anti-inflammatory M2 phenotype and bFGF, CD206, collagen1A, and IL-10 production that causes fibroblast migration and wound closure through influencing M2 macrophage. Ag/Tlc/Csn is suggested to be taken into consideration as a medical combination for improving infected wound healing and as a promising agent for clinical administration.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.msec.2021.112294DOI Listing

Publication Analysis

Top Keywords

wound healing
12
ag/tlc/csn ncs
12
lawsonia inermis
8
inorganic/organic hybrid
8
infected wound
8
exterior surface
8
surface layer
8
layer talc
8
biological fabrication
4
fabrication electrostatic
4

Similar Publications

Background: Acne is an inflammatory skin disease afflicting the majority of the world's population at some point in their lifetime, and is seen to be chronic in about 50% of cases. Acne leads to significant social withdrawal, depression, and disfiguring scars in many cases. Available treatments are characterized by high rates of relapse, dangerous side effects, and social stigma, which often leads to poor patient compliance and treatment failure.

View Article and Find Full Text PDF

Regulatory T cells (Tregs) are increasingly being recognized for their role in promoting tissue repair. In this issue of the JCI, Chen et al. found that Tregs at the site of bone injury contribute to bone repair.

View Article and Find Full Text PDF

Introduction/objective: Plants and their bioactive compounds play a crucial role in the pharmaceutical industry for treating cancer. To date, the cytotoxic and antiproliferative effects of Hypericum perforatum methanol extract on human thyroid cancer cell lines have not been thoroughly explored. The present study aimed to assess the potential anti-cancer effects of HPME on human thyroid cancer and investigate its potential therapeutic benefits.

View Article and Find Full Text PDF

Hydrogen sulfide (H2S) plays crucial inflammatory modulating roles, representing a promising candidate for anti-inflammatory therapies. However, current H2S delivery approaches lack sufficient specificity against inflammatory response. Herein, regarding the overexpressed aminopeptidase N (APN) at the inflammation sites, an APN-activated self-immolative carbonyl sulfide (COS)/H2S donor (AlaCOS) was developed for inflammatory response-specific H2S delivery.

View Article and Find Full Text PDF

Diabetic foot ulcers (DFUs) represents a significant public health issue, with a rising global prevalence and severe potential complications including amputation. Traditional treatments often fall short due to various limitations such as high recurrence rates and extensive resource utilization. This editorial explores the innovative use of acellular fish skin grafts as a transformative approach in DFU management.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!