The number of total knee and/or hip replacements are expected to exceed 5 million a year by 2030; the incidence of biofilm-associated complications can vary from 1% in primary implants to 5.6% in case of revision. The purpose of this study was to test the ability of sHA-DA, a partially sulphated hyaluronic acid (sHA) functionalized with a dopamine (DA) moiety, to prevent acute bacterial growth in an in vivo model of an intra-operatively highly contaminated implant. Previously, in vitro studies showed that the DA moiety guarantees good performance as binding agent for titanium surface adhesion, while the negatively charged sHA has both a high efficiency in electrostatic binding of positively charged antibiotics, and bone regenerative effects. The in vitro testing also highlighted the effectiveness of the sHA-DA system in inhibiting bacterial spreading through a sustained release of the antibiotic payload from the implant coating. In this study the chemical stability of the sHA-DA to β-ray sterilization was demonstrated, based on evaluation by NMR, SEC-TDA Omnisec and HPLC-MS analysis, thus supporting the approach of terminal sterilization of the coated implant with no loss of efficacy. Furthermore, an in vivo study in rabbits was performed according to UNI EN ISO 10993-6 to assess the histocompatibility of titanium nails pre-coated with sHA-DA. The implants, placed in the femoral medullary cavity and harvested after 12 weeks, proved to be histocompatible and to allow bone growth in adhesion to the metal surface. Finally, an in vivo model of bacterial contamination was set up by injecting 1 mL of bacterial suspension containing 10 or 10 CFU of methicillin-resistant Staphylococcus aureus (MRSA) into the femoral medullary cavity of 30 rabbits. Titanium nails either uncoated or pre-coated with sHA-DA and loaded directly by the surgeon with 5% vancomycin were implanted in the surgical site. After 1 week, only the animals treated with pre-coated nails did not show the presence of systemic or local bacterial infection, as confirmed by microbiology and histology (Smeltzer score). Further insights into the animal model setup are crucial, however the results obtained suggest that the system can be effective in preventing the onset of the bacterial infective process.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.msec.2021.112286 | DOI Listing |
Macromol Biosci
January 2025
Institute for Technical Chemistry, Macromolecular Chemistry, TU Braunschweig, Hagenring 30, 38106, Braunschweig, Germany.
Implant-integrated drug delivery systems that enable the release of biologically active factors can be part of an in situ tissue engineering approach to restore biological function. Implants can be functionalized with drug-loaded nanoparticles through a layer-by-layer assembly. Such coatings can release biologically active levels of growth factors.
View Article and Find Full Text PDFInt J Pharm
January 2025
NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV-EHU), 01006 Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, 28029 Madrid, Spain; Bioaraba, NanoBioCel Research Group, 01006 Vitoria-Gasteiz, Spain. Electronic address:
Cell microencapsulation technologies allow non-autologous implantation of therapeutic cells for sustained drug delivery purposes. The perm-selective membrane of these systems provides resistance to rupture, stablishes the upper molecular weight limit in bidirectional diffusion of molecules, and affects biocompatibility. Thus, despite being a decisive factor to succeed in terms of biosafety and therapeutic efficacy, little progress has been made in its optimization so far.
View Article and Find Full Text PDFClin Neurol Neurosurg
January 2025
Department of Neurosurgery, The Ohio State University, 410 W 10th Ave, Columbus, OH 43210, United States.
Introduction: Lumbar degenerative spinal disease is a common, major cause of pain and disability. Titanium and polyetheretherketone (PEEK) are popular materials for interbody implants although evidence is mixed on which material is superior in terms of fusion and subsidence. The purpose of this study was to evaluate the clinical outcome of 3D printed titanium (3DPT) cages in patients undergoing TLIFs, as well as complication profiles based on widely used outcome metrics and reoperation events.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche (ISM-CNR), Via del Fosso del Cavaliere 100, 00133 Rome, Italy.
Prosthetic joint infections (PJIs) remain a significant challenge, occurring in 1% to 2% of joint arthroplasties and potentially leading to a 20% to 30% mortality rate within 5 years. The primary pathogens responsible for PJIs include Staphylococcus aureus, coagulase-negative staphylococci, and Gram-negative bacteria, typically treated with intravenous antibiotic drugs. However, this conventional approach fails to effectively eradicate biofilms or the microbial burden in affected tissues.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Faculty of Pharmacy, Vasile Goldis Western University of Arad, 310130 Arad, Romania.
Polyethylene terephthalate (PET) is a widely utilized synthetic polymer, favored in various applications for its desirable physicochemical characteristics and widespread accessibility. However, its extensive utilization, coupled with improper waste disposal, has led to the alarming pollution of the environment. Thus, recycling PET products is essential for diminishing global pollution and turning waste into meaningful materials.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!