In vitro model of traumatic brain injury to screen neuro-regenerative biomaterials.

Mater Sci Eng C Mater Biol Appl

Neural Tissue Engineering Keele (NTEK), School of Medicine, Keele University, Staffordshire ST5 5BG, UK. Electronic address:

Published: September 2021

Penetrating traumatic brain injury (pTBI) causes serious neurological deficits with no clinical regenerative therapies currently available. Tissue engineering strategies using biomaterial-based 'structural bridges' offer high potential to promote neural regeneration post-injury. This includes surgical grade materials which can be repurposed as biological scaffolds to overcome challenges associated with long approval processes and scaleup for human application. However, high throughput, pathomimetic models of pTBI are lacking for the developmental testing of such neuro-materials, representing a bottleneck in this rapidly emergent field. We have established a high throughput and facile culture model containing the major neural cell types which govern biomaterial handling in the central nervous system. We show that induction of traumatic injuries was feasible in the model, with post-injury implantation of a surgical grade biomaterial. Cellular imaging in lesions was achievable using standard epifluorescence microscopy methods. Key pathological features of pTBI were evident in vitro namely immune cell infiltration of lesions/biomaterial, with responses characteristic of cell scarring, namely hypertrophic astrocytes with GFAP upregulation. Based on our observations, we consider the high-throughput, inexpensive and facile pTBI model can be used to study biomaterial 'implantation' and evaluate neural cell-biomaterial responses. The model is highly versatile to test a range of laboratory and clinical grade materials for neural regeneration.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.msec.2021.112253DOI Listing

Publication Analysis

Top Keywords

traumatic brain
8
brain injury
8
neural regeneration
8
surgical grade
8
grade materials
8
high throughput
8
vitro model
4
model traumatic
4
injury screen
4
screen neuro-regenerative
4

Similar Publications

Background And Importance: Traumatic intracranial hemorrhage (tICH) after mild traumatic brain injury (mTBI) is not uncommon in the elderly. Often, these patients are admitted to the hospital for observation. The necessity of admission in the absence of clinically important intracranial injuries is however unclear.

View Article and Find Full Text PDF

Objective To investigate the effects and molecular mechanism of Homer protein homolog 1a (Homer 1a) overexpression on nerve injury in mice with traumatic brain injury (TBI). Methods Sixty male C57BL/6 mice were randomly divided into five groups: sham group, TBI group, empty lentivirus (Lv-NC) group, Homer 1a overexpression lentivirus (Lv-Homer 1a) group and Lv-Homer 1a + 740 Y-P group, with 12 mice in each group. The lentivirus was orthotopic injected into the cerebral cortex of mice 5 d before modeling, while 740 Y-P was injected intraperitoneally 1 d before modeling.

View Article and Find Full Text PDF

Improving outcomes for care partners of individuals with traumatic brain injury: Results for a mHealth randomized control trial of the CareQOL app.

Arch Phys Med Rehabil

January 2025

H. Ben Taub Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX, USA; Brain Injury Research Center, TIRR Memorial Hermann, Houston, TX, USA.

Objective: To test the efficacy of a randomized control trial low-touch mobile health intervention designed to promote care partner self-awareness and self-care.

Design: This randomized controlled trial (RCT) included a baseline assessment of self-report surveys of health-related quality of life (HRQOL), care partner-specific outcomes, and the functional/mental status of the person with TBI, as well as a 6-month home monitoring period that included three daily questions about HRQOL, monthly assessments of 12 HRQOL domains, and the use of a Fitbit® to continuously monitor physical activity and sleep. HRQOL surveys were repeated at 3- and 6-months post-home monitoring.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the neurobiological factors that make individuals susceptible to fatigue after a mild COVID-19 infection, aiming to understand the link between brain structure and post-COVID neuropsychiatric symptoms.
  • Researchers used neuropsychiatric assessments and MRI scans on individuals who had COVID-19 and a control group to analyze brain regions related to fatigue.
  • Results indicate that specific brain areas, particularly the right dorsolateral prefrontal cortex, are linked to fatigue severity and can predict ongoing fatigue symptoms months after the infection, shedding light on the neural underpinnings of post-COVID conditions.
View Article and Find Full Text PDF

Context: In line with emerging research, an interprofessional specialty concussion clinic instituted a policy change permitting earlier physiotherapy-based treatment entry. Our objective was to determine the effect of this policy change on concussion recovery outcomes.

Design: Secondary analysis of prospectively collected clinical data.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!