Diastereo- and enantioselective rhodium(III)-catalyzed reductive cyclization of cyclohexadienone-containing 1,6-dienes.

Chem Commun (Camb)

Shanghai Frontiers Science Center for Traditional Chinese Medicine Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China.

Published: September 2021

A diastereo- and enantioselective rhodium(III)-catalyzed reductive cyclization of cyclohexadienone-tethered terminal alkenes and ()-1,2-disubstituted alkenes (1,6-dienes) is reported, providing -bicyclic products bearing three contiguous stereocenters with good yields and high diastereo- and enantioselectivities. The kinetic resolution of the racemic precursor is also achieved with good efficiency. Moreover, a subgram-scale experiment, several transformations of the cyclization product, and one-pot preparation of bridged polycyclic frameworks are presented.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d1cc03645aDOI Listing

Publication Analysis

Top Keywords

diastereo- enantioselective
8
enantioselective rhodiumiii-catalyzed
8
rhodiumiii-catalyzed reductive
8
reductive cyclization
8
cyclization cyclohexadienone-containing
4
cyclohexadienone-containing 16-dienes
4
16-dienes diastereo-
4
cyclization cyclohexadienone-tethered
4
cyclohexadienone-tethered terminal
4
terminal alkenes
4

Similar Publications

A highly regio-, enantio- and diastereo-selective strategy involving initial enantioselective conjugate addition to 4-nitro-5-styrylisoxazoles serves as a key step for the desymmetrization of 2,5-cyclohexadienones has been disclosed. We have designed a new class of 2,5-cyclohexadienones appended with 4-nitro-5-styrylisoxazoles to undergo organocatalytic asymmetric double or triple conjugate addition in a domino sequence depending on the substrate type leading to desymmetrization of the 2,5-cyclohexadienone core. The developed protocol allows the construction of a valuable hydrophenanthrene core or a unique bridged scaffold bearing multiple chiral centers with excellent enantio- (up to >99.

View Article and Find Full Text PDF

A dual photoredox/cobalt-catalyzed protocol for chemo-, regio-, diastereo- and enantioselective reductive coupling of 1,1-disubstituted allenes and cyclobutenes through chemo-, regio-, diastereo- and enantioselective oxidative cyclization followed by stereoselective protonation promoted by a chiral phosphine-cobalt complex is presented. Such process represents an unprecedented reaction pathway for cobalt catalysis that enables selective transformation of the less sterically congested alkenes of 1,1-disubstituted allenes with cyclobutenes, incorporating a broad scope of tetrasubstituted alkenes into the cyclobutane scaffolds in up to 86% yield, >98:2 chemo- and regioselectivity, >98:2 dr and >99.5:0.

View Article and Find Full Text PDF

The chiral amine catalyzed diastereo- and enantioselective [3 + 2] cycloaddition between isatin-derived azomethine ylides and α,β-unsaturated aldehydes was successfully carried out to afford spiro[oxindole-3,2'-pyrrolidine]s. It was anticipated that the formation of azomethine ylides occurred the cycloreversion of dispirooxindole-imidazolidines, which are precursor imine homodimers, in aqueous solvents.

View Article and Find Full Text PDF

Pd/Cu Catalyzed Asymmetric Allylation for Stereodivergent Synthesis of Glutamic Acid Derivatives.

Chemistry

December 2024

State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China.

A synergistic Pd/Cu catalyst system has been developed for stereodivergent transformation of Morita-Baylis-Hillman (MBH) carbonates and Schiff bases derived from simple amino acids to afford a series of optically active β-branched γ-methyleneglutamic acid derivatives with adjacent tertiary/tertiary and quaternary/tertiary stereocenters in high yields (up to 96 %) with excellent diastereo- and enantioselectivities (>20/1 dr and >99 % ee in most cases) under mild conditions. The use of SKP ligand is disclosed to be crucial for the success of the transformation, and in particular allowing the reaction to proceed at low catalyst loading (0.02 mol % for Pd and 0.

View Article and Find Full Text PDF

Application of β-Keto Acylpyrazoles as 2C Synthons in Asymmetric Cyclizations of -Hydroxychalcones: Stereoselective Construction of -3,4-Dihydrocoumarins.

J Org Chem

December 2024

Institute and State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, P. R. China.

An asymmetric tandem esterification/Michael addition reaction of β-keto acylpyrazoles with -hydroxychalcones has been established under the catalysis of a bifunctional squaramide-tertiary amine. A wide variety of biorelevant 3,4-dihydrocoumarin derivatives were generally obtained in high yields (up to 93%) with excellent diastereo- and enantioselectivities (>19:1 dr, up to 93% ee) under mild reaction conditions. This reaction represents the successful application of β-keto acylpyrazoles as 2C building blocks in catalytic asymmetric cyclizations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!