A quantitative model to understand the microflow-controlled sintering mechanism of metal particles at nanometer to micron scale.

Nanotechnology

State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, People's Republic of China.

Published: October 2021

In this paper, the particle size effect on the sintering behaviors of Cu particles at nanometer to micron scale is explored. The results show that micron-sized particles could form obvious sintering necks at a low temperature of 260 °C, exhibiting a shear strength as high as 64 MPa. A power relation of ∝ between sintering neck radius () and particle radius () is discovered, and a sintering model with a quantitative relational expression of (/) = 160/3is proposed by considering the surface tension driven microflow process between adjacent particles to predict the growth of sintering necks. It is concluded that the sintering process of particles at nanometer to micron scale is controlled by microflow mechanism instead of diffusion mechanism. Our proposed model provides a new theoretical basis for understanding the kinetic growth mechanism of sintering necks of metal particles.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-6528/ac232dDOI Listing

Publication Analysis

Top Keywords

particles nanometer
12
nanometer micron
12
micron scale
12
sintering necks
12
sintering
8
metal particles
8
particles
6
quantitative model
4
model understand
4
understand microflow-controlled
4

Similar Publications

Atomic-scale changes can significantly impact heterogeneous catalysis, yet their atomic mechanisms are challenging to establish using conventional analysis methods. By using identical location scanning transmission electron microscopy (IL-STEM), which provides quantitative information at the single-particle level, we investigated the mechanisms of atomic evolution of Ru nanoclusters during the ammonia decomposition reaction. Nanometre-sized disordered nanoclusters transform into truncated nano-pyramids with stepped edges, leading to increased hydrogen production from ammonia.

View Article and Find Full Text PDF

Liquid cell transmission electron microscopy (LCTEM) is a powerful technique for investigating crystallisation dynamics with nanometre spatial resolution. However, probing phenomena occurring in liquids while mixing two precursor solutions has proven extremely challenging, requiring sophisticated liquid cell designs. Here, we demonstrate that introducing and withdrawing solvents in sequence makes it possible to maintain optimal imaging conditions while mixing liquids in a commercial liquid cell.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on developing a green and effective pesticide formulation using nanoemulsions, including adjuvants like Calcium Alkyl Benzene Sulphonate (Atlox 4838B) and trisiloxane ethoxylate (ARGAL), aimed at targeting the pest Sitophilus oryzae.
  • Results indicate that all formulations achieved nanoscale droplets, with scanning electron microscopy revealing their spherical shapes, while dynamic light scattering showed variations in size based on the presence of adjuvants.
  • The nanoemulsions demonstrated good stability under various conditions, with most formulations having acidic to neutral pH levels, and adjuvants enhanced their stability by altering droplet characteristics and increasing kinetic stability.
View Article and Find Full Text PDF

Glassy Dynamics and Local Crystalline Order in Two-Dimensional Amorphous Silica.

J Phys Chem B

January 2025

Dipartimento di Fisica, Università di Trieste, Strada Costiera 11, 34151 Trieste, Italy.

We reassess the modeling of amorphous silica bilayers as a 2D classical system whose particles interact with an effective pairwise potential. We show that it is possible to reparametrize the potential developed by Roy, Heyde, and Heuer to quantitatively match the structural details of the experimental samples. We then study the glassy dynamics of the reparametrized model at low temperatures.

View Article and Find Full Text PDF

Activated Nanocellulose from Corn Husk: Application to As and Pb Adsorption Kinetics in Batch Wastewater.

Polymers (Basel)

December 2024

Research Group for the Development of Advanced Materials for Water and Food Treatment, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru.

The aim of this study was to evaluate the removal of Pb and As from an aqueous solution using corn residue cellulose nanocrystals (NCCs). The corn husk was subjected to alkaline digestion, followed by bleaching and esterification with 3% citric acid to obtain NCCs. A 10 ppm multimetal solution of Pb and As was prepared.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!