Soft tissues in the hip region, which are typically considered the natural shock-absorbers during falls, attenuate the applied forces to the underlying hard tissue. The soft tissue thickness is, therefore, a significant parameter in the force attenuation. Another factor that could affect the assessment of the force attenuation in numerical simulations is the choice of constitutive model and material parameters for the soft tissue. Several constitutive models and parameters for muscle and adipose tissue were suggested in the published literature; however, the biofidelity of the proposed models for the lateral impacts has not been assessed yet. To achieve this purpose, we used a previously developed human body model named THUMS v4.02 and modified the mechanical properties and geometry of the soft tissues in the hip region. The simulations consisted of regional hip models and whole-body models. The biofidelity of the constitutive models of muscle and adipose tissue was determined objectively using the CORrelation and Analysis (CORA) rating. Moreover, the potential force attenuating effect of the adipose tissue thickness was investigated in the regional models. We collected and fitted several available nonlinear material models for muscle and adipose tissue and implemented them. The CORA ratings for several constitutive models for adipose tissue in the regional model were above 0.8. Among the muscle constitutive models, three Ogden models consistently rated above 0.58 for the whole-body model. Moreover, the impact forces in the selected adipose tissue model attenuated 47 N for every 1 mm increase in thickness. Overall, the choice of the nonlinear material model for the adipose and muscle tissue influences the external and internal force, and the difference between the material models is more pronounced when the thickness of the soft tissue increases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jmbbm.2021.104743 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!