Competitive adsorption of heavy metals onto modified biochars: Comparison of biochar properties and modification methods.

J Environ Manage

Department of Environment Engineering, Seoul National University of Science & Technology, Seoul, 01811, South Korea. Electronic address:

Published: December 2021

Various biochars (BCs) have been developed to remove heavy metals contained in road runoff; however, there is insufficient information regarding the competitive adsorption efficiency of modified BC with regard to heavy metals due to a lack of comparative evaluation based on BC properties and modification methods. In this study, three different types of BC (RBC: rice husk, WBC: wood chip, MBC: mixture) were modified following five different methods: acidic, alkaline, oxidic, and manganese oxide (MnOx) and iron oxide (FeOx) impregnation. The changes in the physicochemical and morphological properties of the modified BC were investigated, and the adsorption characteristics of three heavy metals (Cd, Pb, and Zn) under single and mixed conditions were compared and evaluated. The improvements in the BC properties varied for different BC types and modification methods; in particular, alkaline and manganese modification caused substantial the changes in the surface area and functional groups (such as aromatic ring, -OH, and Mn-O groups). The BC prepared by manganese oxide impregnation absorbed a high amount of heavy metals (>9.15 mg/g) even under mixed conditions through cation exchange and surface complexation. The distribution coefficient (K) of heavy metals was high in the order of Pb > Cd > Zn; thus, the adsorption of Pb replaced that of Zn in competitive adsorption due to the difference in their affinity to BC. Therefore, the results suggest that BC prepared by manganese oxide impregnation is suitable for removing heavy metals from road runoff, as it maintained high heavy metals adsorption regardless of the BC material, even under competitive conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2021.113651DOI Listing

Publication Analysis

Top Keywords

heavy metals
32
competitive adsorption
12
modification methods
12
manganese oxide
12
heavy
8
metals
8
properties modification
8
road runoff
8
mixed conditions
8
prepared manganese
8

Similar Publications

Deletion of metal transporter Zip14 reduces major histocompatibility complex II expression in murine small intestinal epithelial cells.

Proc Natl Acad Sci U S A

January 2025

Center for Nutritional Sciences, Food Science and Human Nutrition Department, College of Agricultural and Life Sciences, University of Florida, Gainesville, FL 32611.

Documented worldwide, impaired immunity is a cardinal signature resulting from loss of dietary zinc, an essential micronutrient. A steady supply of zinc to meet cellular requirements is regulated by an array of zinc transporters. Deletion of the transporter Zip14 (Slc39a14) in mice produced intestinal inflammation.

View Article and Find Full Text PDF

The diversity and heterogeneity of biomarkers has made the development of general methods for single-step quantification of analytes difficult. For individual biomarkers, electrochemical methods that detect a conformational change in an affinity binder upon analyte binding have shown promise. However, because the conformational change must operate within a nanometer-scale working distance, an entirely new sensor, with a unique conformational change, must be developed for each analyte.

View Article and Find Full Text PDF

Electron transfer in polysaccharide monooxygenase catalysis.

Proc Natl Acad Sci U S A

January 2025

California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720.

Polysaccharide monooxygenase (PMO) catalysis involves the chemically difficult hydroxylation of unactivated C-H bonds in carbohydrates. The reaction requires reducing equivalents and will utilize either oxygen or hydrogen peroxide as a cosubstrate. Two key mechanistic questions are addressed here: 1) How does the enzyme regulate the timely and tightly controlled electron delivery to the mononuclear copper active site, especially when bound substrate occludes the active site? and 2) How does this electron delivery differ when utilizing oxygen or hydrogen peroxide as a cosubstrate? Using a computational approach, potential paths of electron transfer (ET) to the active site copper ion were identified in a representative AA9 family PMO from (PMO9E).

View Article and Find Full Text PDF

is a dominant member of the human gut microbiome and produces short-chain fatty acids (SCFAs). These promote immune system function and inhibit inflammation, making this microbe important for human health. Lactate is a primary source of gut SCFAs but its utilization by has not been explored.

View Article and Find Full Text PDF

ANAC044 orchestrates mitochondrial stress signaling to trigger iron-induced stem cell death in root meristems.

Proc Natl Acad Sci U S A

January 2025

Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.

While iron (Fe) is essential for life and plays important roles for almost all growth related processes, it can trigger cell death in both animals and plants. However, the underlying mechanisms for Fe-induced cell death in plants remain largely unknown. S-nitrosoglutathione reductase (GSNOR) has previously been reported to regulate nitric oxide homeostasis to prevent Fe-induced cell death within root meristems.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!