The tremendous amount of waste is an environmental and social problem worldwide. The agri-food sector is the largest producer of waste and requires the extensive use of fertilizers, which entails the need to look for innovative solutions in waste management. Properly recycled bio-waste can be reused as fertilizer. Polymer capsules with immobilized waste biomass can be applied as carriers for fertilizer nutrients. The amount of components exerts a certain influence on the effectiveness of copper ions binding. The most important physicochemical properties of biocomposites, such as swelling, SEM (Scanning Electron Microscopy) and FTIR (Fourier Transform Infrared Spectroscopy) were investigated. FTIR analyzes revealed that carboxyl and hydroxyl groups play a key role in Cu ion binding. Morphology analysis showed that ion binding leads to homogenization of the composite surface, while coating the structure makes it more regular and cohesive. The sorption kinetics and the determination of the process's equilibrium parameters (Q = 29.4 ± 0.493 mg g) play an important role. The study of Cu ion release in different media showed that the chitosan layer slowed down the diffusion of cations by about 50% in NaNO (1% m/m) solution. Preliminary studies of the applicability of the capsules in germination tests demonstrate that the biocomposites have no phytotoxic effects on the test plant. The chitosan coating slows the release of Cu ions by about 20% compared to uncoated capsules. New fertilizer formulations containing chitosan-encapsulated hydrogel with biomass-immobilized micronutrients can be applied for precision agriculture to minimize the loss of fertilizer nutrients to the environment. These fertilizers could be used to cultivate houseplants and greenhouse crops.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2021.113480DOI Listing

Publication Analysis

Top Keywords

fertilizer nutrients
8
ion binding
8
directions agricultural
4
agricultural wastes
4
wastes valorization
4
valorization hydrogel
4
hydrogel biocomposite
4
biocomposite fertilizers
4
fertilizers tremendous
4
tremendous amount
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!