Wnt signaling is one of the major signaling pathways that regulate cell differentiation, tissue patterning and stem cell homeostasis and its dysfunction causes many human diseases, such as cancer. It is of tremendous interests to understand how Wnt signaling is regulated in a precise manner both temporally and spatially. Naked cuticle (Nkd) acts as a negative-feedback inhibitor for Wingless (Wg, a fly Wnt) signaling in Drosophila embryonic development. However, the role of Nkd remains controversial in later fly development, particularly on the canonical Wg pathway. In the present study, we show that nkd is essential for wing pattern formation, such that both gain and loss of nkd result in the disruption of Wg target expression in larvae stage and abnormal adult wing morphologies. Furthermore, we demonstrate that a thirty amino acid fragment in Nkd, identified previously in Wharton lab, is critical for the canonical Wg signaling, but is dispensable for Wg/planar cell polarity pathway. Putting aside the pleiotropic nature of nkd function, i.e. its role in the Decapentaplegic signaling, we conclude that Nkd universally inhibits the canonical Wg pathway across a life span of Drosophila development.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbrc.2021.08.077 | DOI Listing |
Open Med (Wars)
January 2025
Department of Obstetrical, The First Affiliated Hospital of Wenzhou Medical University, Nanbaixiang Street, Ouhai District, Wenzhou, Zhejiang, 325000, China.
Gestational diabetes mellitus (GDM), defined as glucose intolerance occurring or first detected during pregnancy, affects approximately 8% of pregnancies worldwide. The dysfunction of trophoblasts in pregnancies complicated by GDM is associated with changes in trophoblast cell functions, resulting in compromised proliferation and regulation of the cell cycle. Cyclin B1 (CCNB1), a pivotal controller of the start of mitosis, is crucial in these mechanisms.
View Article and Find Full Text PDFCancer Metastasis Rev
January 2025
Discipline of Obstetrics and Gynaecology, Adelaide Medical School, Robinson Research Institute, The University of Adelaide, Adelaide, 5005, Australia.
Cancer stem cells play an important role in tumor progression and chemotherapy resistance. Leucine-rich G repeat-containing protein-coupled receptor 5 (LGR5) has been identified as a cancer stem cell marker in several cancer types. LGR5 is involved in cancer development and progression via several pathways including WNT/β-catenin signaling pathway.
View Article and Find Full Text PDFFunct Integr Genomics
January 2025
Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, 32897, Egypt.
Prostate cancer (PC) ranks among the most prevalent cancers in males. Recent studies have highlighted intricate connections between long non-coding RNAs (lncRNAs), natural products, and cellular signaling in PC development. LncRNAs, which are RNA transcripts without protein-coding function, influence cell growth, programmed cell death, metastasis, and resistance to treatments through pathways like PI3K/AKT, WNT/β-catenin, and androgen receptor signaling.
View Article and Find Full Text PDFMol Biol Rep
January 2025
Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, 91766-1854, USA.
Cell communication and competition pathways are malleable to Myocardial Infarction (MI). Key signals, transcriptive regulators, and metabolites associated with apoptotic responses such as Myc, mTOR, and p53 are important players in the myocardium. The individual state of cardiomyocytes, fibroblasts, and macrophages in the heart tissue are adaptable in times of stress.
View Article and Find Full Text PDFEndocrinology
January 2025
Anne M. Delany, PhD, Center for Molecular Oncology, UConn Health, Farmington, CT.
Glucocorticoid excess causes bone loss due to decreased bone formation and increased bone resorption; miR-433-3p is a miRNA that negatively regulates bone formation in male mice by targeting Runx2 as well as RNAs involved in Wnt, protein kinase A and endogenous glucocorticoid signaling. To examine the impact of miR-433-3p on glucocorticoid-mediated bone loss, transgenic mice expressing a miR-433-3p tough decoy inhibitor in the osteoblast lineage were administered prednisolone via slow-release pellets. Bone loss was greater in control mice treated with prednisolone compared with miR-433-3p tough decoy mice due to higher osteoclast activity in the controls.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!