AI Article Synopsis

Article Abstract

Burkholderia pseudomallei causes melioidosis - an infectious disease with high mortality. Its varied clinical manifestations and resistance to many antibiotics make it a potential biothreat agent and calls for a robust diagnostic assay and effective vaccines. Bacterial cell surface polysaccharides are considered a valuable target for diagnostics and as protective antigen candidates. This study characterized the structure of polysaccharides of B. pseudomallei clinical strain from Hainan, China. A novel structural domain [→3-(α-D-Manp-1→3-α-D-Manp)-2Me-α-L-6dTalp-1→] was identified by chemical analysis, gas chromatography-mass spectrometry (GC-MS), and 1D/2D nuclear magnetic resonance (NMR) spectroscopy. Immunofluorescence and enzyme-linked immunosorbent assay (ELISA) showed that the serum antibodies against the purified polysaccharide antigen could recognize and bind specifically to B. pseudomallei strains. Additionally, the assays revealed cross-reactivity with polysaccharides from different clinical strains. The polysaccharide antigen also exhibited a strong reaction with the sera from melioidosis patients. Thus, the pentasaccharide repeating unit residue could be a potential candidate antigen for the melioidosis serodiagnosis and vaccine development.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jpba.2021.114340DOI Listing

Publication Analysis

Top Keywords

pentasaccharide repeating
8
repeating unit
8
burkholderia pseudomallei
8
polysaccharide antigen
8
structural characterization
4
characterization novel
4
novel pentasaccharide
4
unit burkholderia
4
pseudomallei
4
pseudomallei strain
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!