Complexation of amoxicillin by transition metals: Physico-chemical and antibacterial activity evaluation.

Bioelectrochemistry

Sultan Moulay Slimane University of Beni Mellal, Laboratory of Chemistry, Modeling and Environmental Sciences, Polydisciplinary faculty, 25 000 Khouribga, Morocco. Electronic address:

Published: December 2021

Some bacteria have developed resistance to antibiotics that were once commonly used to treat them. Moreover, this resistance has become more and more massive and worrying. During this work, we succeeded in synthesizing "metal-antibiotic" complexes, combining as a ligand for the metals of Cu (II), Zn (II) and Fe (III). These complexes AMX - M (M = Cu, Fe and Zn) were characterized by UV-Vis spectrophotometry, IR spectroscopy, and electrochemical methods. Job's method of continuous variation suggested 1:1 metals to ligand stoichiometry for all amoxicillin complexes. The binding constant/association constant (K) of the AMX with Zn(II), Cu(II), and Fe(III) were found to be 4.46 × 10, 7.17 × 10 and 7.65 × 10 L mol, respectively. The IR spectra shows that the ligands coordinated to the metal ions through amino, imino, carboxylate, β-lactamic and carbonyl groups. The electrochemical results proved that amoxicillin oxidation process can be delayed by transition metal complexation. After, the complex synthesis, the antibacterial activity of ligand and its metal complexes were evaluated against Escherichia. coli bacteria by antibiogram method. The results show that the metal-amoxicillin complexes have better antibacterial activity against Escherichia coli (E. coli) than the free ligand (amoxicillin) due to the AMX protection against oxidation after complexation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bioelechem.2021.107936DOI Listing

Publication Analysis

Top Keywords

antibacterial activity
12
escherichia coli
8
complexes
5
complexation amoxicillin
4
amoxicillin transition
4
transition metals
4
metals physico-chemical
4
physico-chemical antibacterial
4
activity evaluation
4
evaluation bacteria
4

Similar Publications

Mushrooms are considered one of the safe and effective medications because they have great economic importance due to countless biological properties. Cordyceps militaris contains bioactive compounds with antioxidant, antimicrobial and anti-cancerous properties. This study was projected to analyze the potentials of biometabolites and to extract antimicrobial peptides and protein from the C.

View Article and Find Full Text PDF

Perspectives in MicroRNA Therapeutics for Cystic Fibrosis.

Noncoding RNA

January 2025

Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, University of Ferrara, 44121 Ferrara, Italy.

The discovery of the involvement of microRNAs (miRNAs) in cystic fibrosis (CF) has generated increasing interest in the past years, due to their possible employment as a novel class of drugs to be studied in pre-clinical settings of therapeutic protocols for cystic fibrosis. In this narrative review article, consider and comparatively evaluate published laboratory information of possible interest for the development of miRNA-based therapeutic protocols for cystic fibrosis. We consider miRNAs involved in the upregulation of CFTR, miRNAs involved in the inhibition of inflammation and, finally, miRNAs exhibiting antibacterial activity.

View Article and Find Full Text PDF

Recent times have witnessed revolutionary progress in the design and development of functionalized nanomaterials as promising tools for biomedicinal applications. However, the gap in the fundamental understanding of the "biological responses" of the nanomaterials after the formation of "protein-corona" when it is exposed to the body system has drawn a thin line from its discoveries to real clinical trial. In this article we have synthesized two different silver NPs capped with the polyphenols of (guava) leaf extract and the other with one of its major polyphenolic groups, morin.

View Article and Find Full Text PDF

Biomolecular Microneedle Initiates FeO/MXene Heterojunction-Mediated Nanozyme-Like Reactions and Bacterial Ferroptosis to Repair Diabetic Wounds.

Adv Sci (Weinh)

January 2025

Department of Urology, Institute of Urology, Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.

Reactive oxygen species (ROS) play a dual role in wound healing. They act as crucial signaling molecules and antimicrobial agents when present at moderate levels. However, excessive levels of ROS can hinder the healing process for individuals with diabetes.

View Article and Find Full Text PDF

Mycophenolate mofetil: an update on its mechanism of action and effect on lymphoid tissue.

Front Immunol

January 2025

Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland.

Introduction: Mycophenolate mofetil (MMF) is an immunosuppressive drug administered in the management of both autoimmune diseases and organ transplantation. The main aims of the study were: (a) to obtain information regarding the safety of using MMF in respect of its effect on normal T and B cells in lymphoid tissues; (b) to investigate whether the generation of inducible Foxp3-expressing regulatory T cells (Treg) might constitute additional mechanisms underlying the immunosuppressive properties of MMF.

Methods: The effect of MMF ( studies) and its active metabolite, mycophenolic acid, ( studies) on murine CD4 and CD8 T cells as well as B cells was determined, regarding: (a) absolute count, proliferation and apoptosis of these cells ( studies); (b) absolute count of these cells in the head and neck lymph nodes, mesenteric lymph nodes and the spleen ( studies).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!