A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

On computational classification of genetic cardiac diseases applying iPSC cardiomyocytes. | LitMetric

On computational classification of genetic cardiac diseases applying iPSC cardiomyocytes.

Comput Methods Programs Biomed

Faculty of Medicine and Health Technology, Tampere University, Finland; Heart Center, Tampere University Hospital, 33520 Tampere, Finland.

Published: October 2021

Background: Cardiomyocytes differentiated from human induced pluripotent stem cells (iPSC-CMs) can be used to study genetic cardiac diseases. In patients these diseases are manifested e.g. with impaired contractility and fatal cardiac arrhythmias, and both of these can be due to abnormal calcium transients in cardiomyocytes. Here we classify different genetic cardiac diseases using Ca transient data and different machine learning algorithms.

Methods: By studying calcium cycling of disease-specific iPSC-CMs and by using calcium transients measured from these cells it is possible to classify diseases from each other and also from healthy controls by applying machine learning computation on the basis of peak attributes detected from calcium transient signals.

Results: In the current research we extend our previous study having Ca-transient data from four different genetic diseases by adding data from two additional diseases (dilated cardiomyopathy and long QT Syndrome 2). We also study, in the light of the current data, possible differences and relations when machine learning modelling and classification accuracies were computed by using either leave-one-out test or 10-fold cross-validation.

Conclusions: Despite more complex classification tasks compared to our earlier research and having more different genetic cardiac diseases in the analysis, it is still possible to attain good disease classification results. As excepted, leave-one-out test and 10-fold cross-validation achieved virtually equal results.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cmpb.2021.106367DOI Listing

Publication Analysis

Top Keywords

genetic cardiac
16
cardiac diseases
16
machine learning
12
diseases
8
calcium transients
8
leave-one-out test
8
test 10-fold
8
genetic
5
cardiac
5
computational classification
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!