Background And Objective: Traditional Chinese Medicine is more inclined to holistic thinking than most modern pharmacological research. The multiple components and targets of traditional Chinese medicine have become a stumbling block in the study of drug action mechanisms in the life sciences. The current study aimed to reveal the active ingredients of "Radix Astragali and Rehmanniae Radix Mixture (RA-RRM)" involved in ameliorating diabetic foot ulcers and to analyze the related signaling pathways.

Method: The Traditional Chinese Medicine Systems Pharmacology Data base and Analysis Platform (TCMSP) was used to screen the active ingredients in RA-RRM based on the evaluation of the molecular weight (MW), bioavailability (OB), and transport of these active ingredients across intestinal epithelial cells (Caco-2) and the blood-brain barrier (BBB). The PubChem database was used to illustrate the structural formula and SMILES of these active ingredients in RA-RRM. The Swiss Target Prediction Database, DrugBank, Genecards, and CTD were used to predict the targets that were correlated with RA-RRM-based treatment of diabetic foot ulcers. Cytoscape 3.7.0 software was used to construct the protein/gene interaction network diagram, compound target interaction network diagram, and target pathway network diagram for these active ingredients in the amelioration of diabetic foot ulcers in RA-RRM. Topological parameter calculations of target information using Cytoscape 3.7.0 software yielded drug-disease targets were used to reveal the relationship between key active ingredients in RA-RMM and targets of interest for the treatment of diabetic foot. The disease targets of drug action were imported into the David database (GO and KEGG analysis) to analyze the enriched pathways and biological processes.

Results: The following results were obtained using the abovementioned screening and analysis. Fourteen key active ingredients in RA-RRM and 309 targets were found; among them, 85 targets were found to be related to diabetic foot ulcers using TCMSP. Twenty-three biological processes, 7 cell components and 14 molecular functions were found to ameliorate diabetic foot ulcers using GO analysis. In addition, 29 signaling pathways were found to be involved in RA-RRM-induced amelioration, including the NF-κB, TNF, TGF-β, VEGF, and HIF-1 signaling pathways, using KEGG analysis.

Conclusions: Based on current available evidence obtained from the abovementioned data/information databases and based on the perspective of TCM-related theories, the present study revealed the key active ingredients in RA-RRM and related signaling pathways in the treatment of diabetic foot ulcers, promoting further studies on and clinical applications of RA-RRM.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jbi.2021.103904DOI Listing

Publication Analysis

Top Keywords

active ingredients
36
diabetic foot
32
foot ulcers
28
key active
16
signaling pathways
16
ingredients ra-rrm
16
traditional chinese
12
chinese medicine
12
treatment diabetic
12
network diagram
12

Similar Publications

A Review of Bavachinin and Its Derivatives as Multi-therapeutic Agents.

Chem Biodivers

January 2025

Gannan Medical University, Depatment of Medicinal Chemistry, Gannan Medical University, 341000, Ganzhou, CHINA.

Extracting natural active ingredients from plants is an effective way to develop and screen modern drugs. Psoralea corylifolia is a leguminous plant whose seeds have long been used as a Traditional Chinese Medicine to treat psoriasis, rheumatism, dermatitis, and other diseases. To date, several main compounds, including coumarins, flavonoids, monoterpene phenols, and benzofurans, have been identified from the seeds of Psoralea corylifolia.

View Article and Find Full Text PDF

Development of a Highly Nutritious Vegetable Beverage Based on Kurugua (Sicana odorifera) and Chia Oil (Salvia hispanica).

Plant Foods Hum Nutr

January 2025

Facultad de Ciencias Químicas, Dirección de Investigaciones, Universidad Nacional de Asunción, P.O. 1055, San Lorenzo, Paraguay.

Concerns over malnutrition, synthetic additives and post-harvest waste highlight the need for innovation in food technology, turning towards underutilized crops. Plant-based beverages offer sustainable dietary alternatives and the increasing demand for such products makes the exploration of native crops particularly relevant. This study focuses on the development of a beverage derived from the native South American fruit kurugua (Sicana odorifera), combined with chia oil (Salvia hispanica L.

View Article and Find Full Text PDF

Quinoa, rich in pharmacologically active ingredients, possesses the potential benefit in preventing cognitive impairments induced by hypoxia. In this study, the efficacy of quinoa ethanol extracts (QEE) consumption (200 and 500 mg/kg/d, respectively) against hypobaric hypoxia (HH)-induced cognitive deficits in mice was investigated. QEE significantly ameliorated hypoxic stress induced by HH, as evidenced by improvements in baseline indices and reductions in hypoxia-inducible factor 1α levels.

View Article and Find Full Text PDF

Show the generalizability of an ingredient-based method to automatically create an up-to-date, error-free, complete list of medication codes (e.g., opioid medications with at least one opioid ingredient) from an ingredient list (e.

View Article and Find Full Text PDF

Supercritical CO modified by polar solvents can extract a wide variety of polar and non-polar chemical components compared to conventional methods. The current study aims to extract Rivas (Rheum ribes) flower using the ethanol modified supercritical CO (SCO-EOH) method; analyze its chemical compounds and bioactivity, encapsulate the extract in maltodextrin, gum-Arabic (GA), and their combination (GA + MD) using the spray drying method and investigate the differences among microparticles using Principal Component Analysis (PCA). The Rivas extract obtained by the SCO-EOH method was a rich source of unsaturated fatty acids (mainly linoleic acid: 57.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!