Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Cosegmentation is a newly emerging computer vision technique used to segment an object from the background by processing multiple images at the same time. Traditional plant phenotyping analysis uses thresholding segmentation methods which result in high segmentation accuracy. Although there are proposed machine learning and deep learning algorithms for plant segmentation, predictions rely on the specific features being present in the training set. The need for a multi-featured dataset and analytics for cosegmentation becomes critical to better understand and predict plants' responses to the environment. High-throughput phenotyping produces an abundance of data that can be leveraged to improve segmentation accuracy and plant phenotyping. This paper introduces four datasets consisting of two plant species, Buckwheat and Sunflower, each split into control and drought conditions. Each dataset has three modalities (Fluorescence, Infrared, and Visible) with 7 to 14 temporal images that are collected in a high-throughput facility at the University of Nebraska-Lincoln. The four datasets (which will be collected under the CosegPP data repository in this paper) are evaluated using three cosegmentation algorithms: Markov random fields-based, Clustering-based, and Deep learning-based cosegmentation, and one commonly used segmentation approach in plant phenotyping. The integration of CosegPP with advanced cosegmentation methods will be the latest benchmark in comparing segmentation accuracy and finding areas of improvement for cosegmentation methodology.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8412305 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0257001 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!