A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Technical fishway passage structures provide high passage efficiency and effective passage for adult Pacific salmonids at eight large dams. | LitMetric

Technical fishway passage structures provide high passage efficiency and effective passage for adult Pacific salmonids at eight large dams.

PLoS One

Department of Fish and Wildlife Sciences, College of Natural Resources, University of Idaho, Moscow, Idaho, United States of America.

Published: November 2021

Fishways have been widely used for upstream passage around human-built structures, but 'success' has varied dramatically. Evaluation of fishway success has typically been conducted at local scales using metrics such as fish passage efficiency and passage time, but evaluations are increasingly used in broader assessments of whether passage facilities meet population-specific conservation and management objectives. Over 15 years, we monitored passage effectiveness at eight dams on the Columbia and Snake rivers for 26,886 radio-tagged spring-summer and fall Chinook Salmon O. tshwaytscha, Sockeye Salmon O. nerka, and summer steelhead O. mykiss during their migrations to spawning sites. Almost all fish that entered dam tailraces eventually approached and entered fishways. Tailrace-to-forebay passage efficiency estimates at individual dams were consistently high, averaging 0.966 (SD = 0.035) across 245 run×year×dam combinations. These estimates are among the highest recorded for any migratory species, which we attribute to the scale of evaluation, salmonid life history traits (e.g., philopatry), and a sustained adaptive management approach to fishway design, maintenance, and improvement. Full-dam fish passage times were considerably more variable, with run×year×dam medians ranging from 5-65 h. Evaluation at larger scales provided evidence that fishways were biologically effective, e.g., we observed rapid migration rates (medians = 28-40 km/d) through river reaches with multiple dams and estimated fisheries-adjusted upstream migration survival of 67-69%. However, there were substantive uncertainties regarding effectiveness. Uncertainty about natal origins confounded estimation of population-specific survival and interpretation of apparent dam passage 'failure', while lack of post-migration reproductive data precluded analyses of delayed or cumulative effects of passing the impounded system on fish fitness. Although the technical fishways are effective for salmonids in the Columbia-Snake River system, other co-migrating species have lower passage rates, highlighting the need for species-specific design and evaluation wherever passage facilities impact fish management and conservation goals.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8412358PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0256805PLOS

Publication Analysis

Top Keywords

passage
13
passage efficiency
12
fish passage
8
passage facilities
8
fish
5
technical fishway
4
fishway passage
4
passage structures
4
structures provide
4
provide high
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!