A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Improving Early Identification of Significant Weight Loss Using Clinical Decision Support System in Lung Cancer Radiation Therapy. | LitMetric

Purpose: Early identification of patients who may be at high risk of significant weight loss (SWL) is important for timely clinical intervention in lung cancer radiotherapy (RT). A clinical decision support system (CDSS) for SWL prediction was implemented within the routine clinical workflow and assessed on a prospective cohort of patients.

Materials And Methods: CDSS incorporated a machine learning prediction model on the basis of radiomics and dosiomics image features and was connected to a web-based dashboard for streamlined patient enrollment, feature extraction, SWL prediction, and physicians' evaluation processes. Patients with lung cancer (N = 37) treated with definitive RT without prior RT were prospectively enrolled in the study. Radiomics and dosiomics features were extracted from CT and 3D dose volume, and SWL probability (≥ 0.5 considered as SWL) was predicted. Two physicians predicted whether the patient would have SWL before and after reviewing the CDSS prediction. The physician's prediction performance without and with CDSS and prediction changes before and after using CDSS were compared.

Results: CDSS showed significantly better prediction accuracy than physicians (0.73 0.54) with higher specificity (0.81 0.50) but with lower sensitivity (0.55 0.64). Physicians changed their original prediction after reviewing CDSS prediction for four cases (three correctly and one incorrectly), for all of which CDSS prediction was correct. Physicians' prediction was improved with CDSS in accuracy (0.54-0.59), sensitivity (0.64-0.73), specificity (0.50-0.54), positive predictive value (0.35-0.40), and negative predictive value (0.76-0.82).

Conclusion: Machine learning-based CDSS showed the potential to improve SWL prediction in lung cancer RT. More investigation on a larger patient cohort is needed to properly interpret CDSS prediction performance and its benefit in clinical decision making.

Download full-text PDF

Source
http://dx.doi.org/10.1200/CCI.20.00189DOI Listing

Publication Analysis

Top Keywords

cdss prediction
20
lung cancer
16
prediction
13
clinical decision
12
swl prediction
12
cdss
11
early identification
8
weight loss
8
decision support
8
support system
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!