AI Article Synopsis

Article Abstract

Loss of function and aggregation of the neuronal protein α-Synuclein (A-Syn) underlies the pathogenesis of Parkinson's disease (PD), and both the function and aggregation of this protein happen to be mediated via its binding to the synaptic vesicles (SVs) at the presynaptic termini. An essential constituent of SV membranes is cholesterol, with which A-Syn directly interacts while binding to membranes. Thus, cholesterol content in SV membranes is likely to affect the binding of A-Syn to these vesicles and consequently its functional and pathogenic behaviors. Interestingly, the dyshomeostasis of cholesterol has often been associated with PD, with reports linking cholesterol levels to an increased risk of neurodegeneration. Herein, using SV-mimicking liposomes containing increasing percentages of membrane cholesterol, we show (with mathematical interpretation) that the binding of A-Syn to synaptic-like vesicles is strongest in the presence of an optimum cholesterol content, which correlates to its maximum function and minimum aggregation. This implicates a minimum risk of neurodegeneration at optimum cholesterol levels and rationalizes the existing controversial relationship between cholesterol levels and PD. Increased membrane cholesterol was, however, found to protect against damage caused by aggregated A-Syn, complementing previous reports and portraying one advantage of high cholesterol over low.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpcb.1c03533DOI Listing

Publication Analysis

Top Keywords

function aggregation
12
cholesterol levels
12
cholesterol
11
membranes cholesterol
8
cholesterol content
8
binding a-syn
8
levels increased
8
risk neurodegeneration
8
membrane cholesterol
8
optimum cholesterol
8

Similar Publications

Ankyloblepharon-Ectodermal Defects-Cleft Lip/Palate (AEC) syndrome is a rare genetic disorder caused by mutations in the TP63 gene, which encodes a transcription factor essential for epidermal gene expression. A key feature of AEC syndrome is chronic skin erosion, for which no effective treatment currently exists. Our previous studies demonstrated that mutations associated with AEC syndrome lead to p63 protein misfolding and aggregation, exerting a dominant-negative effect.

View Article and Find Full Text PDF

Evaluating amyloid-beta aggregation and toxicity in transgenic Caenorhabditis elegans models of Alzheimer's disease.

Methods Cell Biol

January 2025

Federal University of Santa Maria, Center for Natural and Exact Sciences, Department of Biochemistry and Molecular Biology, Graduate Program in Biological Sciences: Toxicological Biochemistry, Camobi, Santa Maria, RS, Brazil.

Alzheimer's disease (AD) is the leading cause of dementia in the elderly, clinically characterized by memory loss, cognitive decline, and behavioral disturbances. Its pathogenesis is not fully comprehended but involves intracellular depositions of amyloid beta peptide (Aβ) and neurofibrillary tangles of hyperphosphorylated tau. Currently, pharmacological interventions solely slow the progression of symptoms.

View Article and Find Full Text PDF

Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder characterized by a repeat of the cytosine-adenine-guanine trinucleotide (CAG) in the huntingtin gene (HTT). This results in the translation of a mutant huntingtin (mHTT) protein with an abnormally long polyglutamine (polyQ) repeat. The pathology of HD leads to neuronal cell loss, motor abnormalities, and dementia.

View Article and Find Full Text PDF

Background: α-Synuclein (α-Syn) pathology is present in 30-50 % of Alzheimer's disease (AD) patients, and its interactions with tau proteins may further exacerbate pathological changes in AD. However, the specific role of different aggregation forms of α-Syn in the progression of AD remains unclear.

Objectives: To explore the relationship between various aggregation types of CSF α-Syn and Alzheimer's disease progression.

View Article and Find Full Text PDF

The ternary complex effectively prevents droplet aggregation, Ostwald ripening, and phase separation through its gel network, thereby demonstrating its capability in bioactive compound delivery. In this work, the influence of varying chickpea protein isolate (CPI) levels on the microstructure, gel characteristics, stability and functional properties of grape seed proanthocyanidin (GSP) and konjac gum (KGM) stabilized ternary complexes was investigated. Visual appearance indicated the formation of a non-stratified ternary complex as the CPI enhanced to 3-4 %.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!