Critical patients with Acute Kidney Injury (AKI) requiring renal replacement therapy are in most cases eligible only for continuous modalities where the electrolyte balance control is a critical issue. The standard solutions used for hemodiafiltration, containing potassium at 2 mmol/L and no phosphorus, determines during the extended renal replacement therapy hypokalemia and hypophosphatemia. Therefore, solutions containing potassium and phosphate in physiological concentrations were formulated to avoid electrolyte imbalances and reduce ion alterations in prolonged treatments, these solutions are not routinely used in the standard clinical practice. To avoid electrolyte imbalances, we have first introduced in our practice two different solutions and then we have retrospectively analyzed the electrolyte balance upon these two solutions in order to identity the impact of these solutions on potassium and phosphate according to our clinical practice. We retrospectively analyzed 96 patients treated with Continuous Renal Replacement Therapy (CRRT) in the intensive care units (ICU) at Padua's University Hospital to evaluate the role on electrolyte balance of Phoxilium and Prismasol 2 that differ in their composition and the need for electrolytes infusions. In the Phoxilium group the frequency of hypokalemia, hypophosphatemia, and the need of potassium and phosphate replacement were significantly reduced resulting in a reduction in complications, workload, and clinical risk associated with infusions of electrolytes. Our data demonstrated that the use of these two different hemodiafiltration solutions can reduce the occurrence of hypokalemia and hypophosphatemia during CRRT performing personalized treatments without the use of potassium and phosphate infusions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/03913988211043203 | DOI Listing |
Front Microbiol
December 2024
Oniris VetAgroBio, INRAE, SECALIM, Nantes, France.
Our study aims to assess the thermal inactivation of non-proteolytic type B spores in a plant-based fish and to evaluate the potential of alternative heat treatments at temperatures below the safe harbor guidelines established for vacuum-packed chilled products of extended durability. First, the heat resistance of the spore suspension was determined using capillary tubes in potassium phosphate buffer at 80°C. The D value was estimated to be 0.
View Article and Find Full Text PDFJ Biosci Bioeng
December 2024
Graduate School of Sciences and Engineering, Yamagata University, Jonan, Yonezawa, Yamagata 992-8510, Japan. Electronic address:
The GH19 chitinase Chi19MK from Lysobacter sp. MK9-1 inhibits fungal growth. In this study, the thermal stability of Chi19MK was investigated in buffers of different pH.
View Article and Find Full Text PDFMar Drugs
November 2024
College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China.
The production of fucoxanthin and fatty acids in has been examined, but the role of elements like phosphorus in their mutualistic interactions is not well understood. To fill this gap, our study utilized potassium dihydrogen phosphate (KHPO) as a source of phosphorus to examine its impact on the synthesis of fucoxanthin and fatty acids in . Our findings revealed that at a phosphorus concentration of 10 mg L, the cell density (9.
View Article and Find Full Text PDFJ Phycol
December 2024
Department of Plant Physiology and Biotechnology, Faculty of Biology, University of Gdańsk, Gdańsk, Poland.
One of the reactive forms of oxygen is hydrogen peroxide (HO), which has been investigated as a key component of growth processes and stress responses. Different methods for the determination of HO production by animal and bacterial cells exist; however, its detection in algal cell cultures is more complicated due to the presence of photosynthetic pigments in the cells and the complex structure of cell walls. Considering these issues, a reliable, quick, and simple method for HO detection is needed in phycological research.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!