Supramolecular fibers composed of monomers that self-assemble directionally noncovalent interactions are ubiquitous in nature, and of great interest in chemistry. In these structures, the constitutive monomers continuously exchange in-and-out the assembly according to a well-defined supramolecular equilibrium. However, unraveling the exchange pathways and their molecular determinants constitutes a nontrivial challenge. Here, we combine coarse-grained modeling, enhanced sampling, and machine learning to investigate the key factors controlling the monomer exchange pathways in synthetic supramolecular polymers having an intrinsic dynamic behavior. We demonstrate how the competition of directional nondirectional interactions between the monomers controls the creation/annihilation of defects in the supramolecular polymers, from where monomers exchange proceeds. This competition determines the exchange pathway, dictating whether a fiber statistically swaps monomers from the tips or from all along its length. Finally, thanks to their generality, our models allow the investigation of molecular approaches to control the exchange pathways in these dynamic assemblies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8482751 | PMC |
http://dx.doi.org/10.1021/acsnano.1c01398 | DOI Listing |
Inorg Chem
January 2025
Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Miyagi 980-8577, Japan.
This study introduces a new method for synthesizing Cu-containing metastable phases through ion exchange. Traditionally, CuCl has been used as a Cu ion source for solid-state ion exchanges; however, its thermodynamic driving force is often insufficient for complete ion exchange with Li-containing precursors. First-principles calculations have identified CuSO and CuPO as more powerful alternatives, providing a higher driving force than CuCl.
View Article and Find Full Text PDFJ Exp Bot
January 2025
Institute of Plant Sciences Paris-Saclay, Centre Nationale de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Evry, Université Paris-Saclay, 91405 Orsay, France.
Nucleosomes, the chromatin building blocks, play an important role in controlling DNA and chromatin accessibility. Nucleosome remodeling and the incorporation of distinct histone variants confer unique structural and biochemical properties, influencing the targeting of multiple epigenetic pathways, particularly DNA methylation. This stable epigenetic mark suppresses transposable element expression in plants and mammals, serving as an additional layer of chromatin regulation.
View Article and Find Full Text PDFProtein Sci
February 2025
Amherst College, Amherst, Massachusetts, USA.
Hydrogen exchange mass spectrometry (HXMS) is a powerful tool to understand protein folding pathways and energetics. However, HXMS experiments to date have used exchange conditions termed EX1 or EX2 which limit the information that can be gained compared to the more general EXX exchange regime. If EXX behavior could be understood and analyzed, a single HXMS timecourse on an intact protein could fully map its folding landscape without requiring denaturation.
View Article and Find Full Text PDFCell Commun Signal
January 2025
Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China.
Efferocytosis is a mechanism by which phagocytes efficiently clear apoptotic cells, averting their secondary necrosis and the subsequent release of potentially immunogenic or cytotoxic substances that can trigger strong immune and inflammatory responses. During efferocytosis, the metabolic pathways of phagocytes are transformed, which, along with the catabolism of apoptotic cargo, can affect their function and inflammatory state. Extensive apoptosis occurs during placental development, and some studies reported the immunomodulatory effects of efferocytosis at the maternal-fetal interface.
View Article and Find Full Text PDFSci Total Environ
January 2025
Uppsala Water and Waste Ltd, Box 1444, 751 44 Uppsala, Sweden.
Pharmaceuticals and per- and polyfluoroalkyl substances (PFAS) are persistent organic micropollutants (OMPs) posing environmental and health risks due to their bioaccumulative nature and potential toxicity. These OMPs spread to the environment due to the extensive use in today's society. Conventional wastewater treatment plants (WWTPs) are not designed to effectively remove these contaminants, making WWTPs an important pathway, especially for pharmaceuticals, to the aquatic environment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!