Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Meeting the evolving demands of plasmonics research requires increasingly precise control over surface plasmon properties, which necessitates extremely fine nanopatterning, complex geometries, and/or long-range order. Nanoplasmonic metasurfaces are representative of a modern research area requiring intricate, high-fidelity features reproduced over areas of several free-space wavelengths, making them one of the most challenging fabrication problems in the field today. This work presents a systematic study of the helium focused ion beam milling of gold for nanoplasmonic metasurface applications, using as its example a nanoplasmonic metasurface based on an array of nanometer-scale plasmonic-wire-loaded subwavelength apertures in a gold film. At each step, the pattern variations are compared to simulation to predict the experimental outcome. Our results show that even in a practical fabrication environment, helium ion beam milling can be used to reliably pattern 10 nm features into gold with 1:5 aspect ratio in complex geometries over a wide area.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.1c09295 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!