Here, we investigated the protective efficacy of protocatechuic acid (PCA) against lipopolysaccharide (LPS)-induced septic lung injury. Eighty-two male Balb/c mice were divided into six groups: control, PCA30 (30 mg/kg), LPS (10 mg/kg), PCA10-LPS, PCA20-LPS, and PCA30-LPS treated with 10, 20 and 30 mg/kg PCA, respectively, for seven days before intraperitoneal LPS injection. PCA pre-treatment, especially at higher dose, significantly reduced LPS-induced lung tissue injury as indicated by increased heat shock protein 70 and antioxidant molecules (reduced glutathione, superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase) accompanied by lower oxidative stress indices (malondialdehyde and nitric oxide). PCA administration decreased inflammatory mediators including myeloperoxidase, nuclear factor kappa B (NF-κB p65), and pro-inflammatory cytokines, and prevented the development of apoptotic events in the lung tissue. At the molecular level, PCA downregulated mRNA expression of nitric oxide synthase 2, C/EBP homologous protein, and high mobility group box1 in the lungs of all PCA-LPS treated mice. Thus, PCA-pre-treatment effectively counteracted sepsis-induced acute lung injury in vivo by promoting and antioxidant status, while inhibiting inflammation and apoptosis. PRACTICAL IMPLICATIONS: Sepsis-mediated organ dysfunction and high mortality is aggravated by acute lung injury (ALI). Therefore, new therapeutic approaches are needed to encounter sepsis-mediated ALI. Protocatechuic acid (PCA) is a naturally occurring phenolic acid with various biological and pharmacological activities. PCA is abundant in edible plants including Allium cepa L., Oryza sativa L., Hibiscus sabdariffa, Prunus domestica L., and Eucommia ulmoides. In this investigation we studied the potential protective role of pure PCA (10, 20 and 30 mg/kg) on LPS-mediated septic lung injury in mice through examining oxidative challenge, inflammatory response, apoptotic events and histopathological changes in addition to evaluating the levels and mRNA expression of heat shock protein 70, C/EBP homologous protein and high mobility group box1 in the lung tissue. The recorded results showed that PCA pre-administration was able to significantly abrogate the damages in the lung tissue associated septic response. This protective effect comes from its strong antioxidant, anti-inflammatory, and anti-apoptotic activities, suggesting that PCA may be applied to alleviate ALI associated with the development of sepsis.

Download full-text PDF

Source
http://dx.doi.org/10.1111/jfbc.13915DOI Listing

Publication Analysis

Top Keywords

lung injury
20
lung tissue
16
protocatechuic acid
12
septic lung
12
pca
10
lung
9
injury mice
8
oxidative stress
8
inflammation apoptosis
8
acid pca
8

Similar Publications

Background: Lung transplantation is a viable lifesaving option for patients with diffuse pulmonary arteriovenous malformations (AVMs). We present a case of diffuse pulmonary AVMs associated with juvenile polyposis and hereditary hemorrhagic telangiectasia (JP-HHT) that was successfully managed by lung transplantation.

Case Presentation: A 19-year-old woman developed severe hypoxemia due to pulmonary AVMs diagnosed at 4 years of age.

View Article and Find Full Text PDF

Feasibility and safety of ultra-low volume ventilation (≤ 3 ml/kg) combined with extra corporeal carbon dioxide removal (ECCOR) in acute respiratory failure patients.

Crit Care

December 2024

Department of Anesthesia and Intensive Care Unit, Regional University Hospital of Montpellier, St-Eloi Hospital, PhyMedExp, INSERM U1046, CNRS UMR, University of Montpellier, 9214, Montpellier Cedex 5, France.

Background: Ultra-protective ventilation is the combination of low airway pressures and tidal volume (Vt) combined with extra corporeal carbon dioxide removal (ECCOR). A recent large study showed no benefit of ultra-protective ventilation compared to standard ventilation in ARDS (Acute Respiratory Distress Syndrome) patients. However, the reduction in Vt failed to achieve the objective of less than or equal to 3 ml/kg predicted body weight (PBW).

View Article and Find Full Text PDF

The clinical manifestations of SARS-CoV-2 infection may range from asymptomatic or minor conditions to severe and life-threatening outcomes. The respiratory system is a principal target of the virus and in the majority of cases of severe disease, an acute form of pneumonia develops. Despite concerted global efforts to elucidate the pathogenic mechanisms of COVID-19, the progression of the infection leading to pulmonary damage remains poorly understood.

View Article and Find Full Text PDF

Current Approaches to Optimize Donor Heart for Transplantation.

J Heart Lung Transplant

December 2024

Department of Cardiothoracic Surgery, NYU Langone Health, New York, NY, USA.

Heart transplantation remains a critical therapy for patients with end-stage heart failure, offering incremental survival and improved quality of life. One of the key components behind the success of heart transplantation is the condition and preservation of the donor heart. In this review, we provide a comprehensive overview of ischemic reperfusion injury, risk factors associated with primary graft dysfunction, current use of various preservation solutions for organ procurement and recent advancements in donor heart procurement technologies.

View Article and Find Full Text PDF

Outcomes in patients with thrombotic microangiopathy associated with a trigger following plasma exchange: A systematic literature review.

Transfus Apher Sci

December 2024

Alexion, AstraZeneca Rare Disease, 121 Seaport Blvd, Boston, MA 02210, USA. Electronic address:

Plasma exchange (PE) outcomes in patients with trigger-associated thrombotic microangiopathy (TMA) have not been comprehensively reviewed. Embase and MEDLINE® were searched on 03/14/2022 for English language articles published after 2007, alongside a congress materials search (2019-2022; PROSPERO: CRD42022325170). Studies with patients with trigger-associated TMA (excluding thrombotic thrombocytopenic purpura, 'typical' hemolytic uremic syndrome caused by Shiga toxin-producing Escherichia coli, post-partum TMA, and TMAs with known genetic cause) who received PE or plasma infusion (PI) and reported treatment response (including measures), safety, patient-/caregiver-reported outcomes, or economic burden data were examined.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!