Potential role of hydrogen sulfide in central nervous system tumors: a narrative review.

Med Gas Res

Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China.

Published: October 2021

Central nervous system tumors are classified as diseases of special clinical significance with high disability and high mortality. In addition to cerebrovascular diseases and craniocerebral injuries, tumors are the most common diseases of the central nervous system. Hydrogen sulfide, the third endogenous gas signaling molecule discovered in humans besides nitric oxide and carbon monoxide, plays an important role in the pathophysiology of human diseases. It is reported that hydrogen sulfide not only exerts a wide range of biological effects, but also develops a certain relationship with tumor development and neovascularization. A variety of studies have shown that hydrogen sulfide acts as a vasodilator and angiogenetic factor to facilitate growth, proliferation, migration and invasion of cancer cells. In this review, the pathological mechanisms and the effect of hydrogen sulfide on the central nervous system tumors are introduced.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8447953PMC
http://dx.doi.org/10.4103/2045-9912.324590DOI Listing

Publication Analysis

Top Keywords

hydrogen sulfide
20
central nervous
16
nervous system
16
system tumors
12
sulfide central
8
hydrogen
5
sulfide
5
potential role
4
role hydrogen
4
central
4

Similar Publications

Lead Phosphate Material for Exclusive Detection of Hydrogen Sulfide Gas.

ACS Sens

January 2025

School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, P. R. China.

Efficient gas sensors that can accurately detect and identify hydrogen sulfide are essential for various practical applications. Conventional resistive sensors often lack the necessary selectivity, which hampers timely and effective HS detection. This study presents lead phosphate-based gas sensors specifically designed for HS detection, which effectively eliminate interference effects.

View Article and Find Full Text PDF

Biofiltration for odor mitigation in water resource recovery facilities.

Sci Total Environ

January 2025

Department of Civil Engineering, City College of New York, New York, NY 10031, United States.

Odor emissions, primarily from anthropogenic activities like waste treatment and industrial processes, pose significant challenges in urban areas, particularly near water resource recovery facilities. While these emissions are generally not toxic, they can adversely affect community wellbeing and investment, prompting stricter regulations in some regions. For example, New York State's hydrogen sulfide guidelines are more stringent than federal standards.

View Article and Find Full Text PDF

Analysis of the protective effect of hydrogen sulfide over time in ischemic rat skin flaps.

Ann Chir Plast Esthet

January 2025

Department of Plastic, Reconstructive, and Aesthetic Surgery, Faculty of Medicine, Çukurova University, Adana, Turkey.

Background: Hydrogen sulfide (HS) is a widely studied gasotransmitter, and its protective effect against ischemia-reperfusion damage has been explored in several studies. Therefore, a requirement exists for a comprehensive study about HS effects on ischemia-reperfusion damage in flap surgery. The aim of this study is to examine the effect of hydrogen sulfide by creating ischemia-reperfusion injury in the vascular-stemmed island flap prepared from the rat groin area.

View Article and Find Full Text PDF

Plants face a range of environmental stresses, such as heat and drought, that significantly reduce their growth, development, and yield. Plants have developed complex signaling networks to regulate physiological processes and improve their ability to withstand stress. The key regulators of plant stress responses include polyamines (PAs) and gaseous signaling molecules (GSM), such as hydrogen sulfide (HS), nitric oxide (NO), methane (CH), carbon monoxide (CO), carbon dioxide (CO), and ethylene (ET).

View Article and Find Full Text PDF

Neuroprotective Actions of Cannabinoids in the Bovine Isolated Retina: Role of Hydrogen Sulfide.

Pharmaceuticals (Basel)

January 2025

Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX 77004, USA.

Both hydrogen sulfide and endocannabinoids can protect the neural retina from toxic insults under in vitro and in vivo conditions. The aim of the present study was two-fold: (a) to examine the neuroprotective action of cannabinoids [methanandamide and 2-arachidonyl glycerol (2-AG)] against hydrogen peroxide (HO)-induced oxidative damage in the isolated bovine retina and (b) to evaluate the role of endogenously biosynthesized hydrogen sulfide (HS) in the inhibitory actions of cannabinoids on the oxidative stress in the bovine retina. Isolated neural retinas from cows were exposed to oxidative damage using HO (100 µM) for 10 min.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!