The breakdown of macrocyclic compounds is of utmost importance in manifold biological and chemical processes, usually proceeding via oxygenation-induced ring-opening reactions. Here, we introduce a surface chemical route to selectively break a prototypical porphyrin species, cleaving off one pyrrole unit and affording a tripyrrin derivative. This pathway, operational in an ultrahigh vacuum environment at moderate temperature is enabled by a distinct molecular conformation achieved via the specific interaction between the porphyrin and its copper support. We provide an atomic-level characterization of the surface-anchored tripyrrin, its reaction intermediates, and byproducts by bond-resolved atomic force microscopy, unequivocally identifying the molecular skeletons. The ring-opening is rationalized by the distortion reducing the macrocycle's stability. Our findings open a route to steer ring-opening reactions by conformational design and to study intriguing tetrapyrrole catabolite analogues on surfaces.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.1c05348 | DOI Listing |
Sci Rep
January 2025
Faculty of Chemistry, University of Guilan, P. O. Box: 41335-1914, Rasht, Iran.
The catalytic efficiency of sulfonated polystyrene foam waste (SPS) and sulfonated gamma alumina (SGA) in Friedel-Crafts type reactions was compared. All of the materials were studied using the state-of-the-art characterization techniques. SPS was found to carry a higher load of -SOH functional groups (1.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh 226031, India.
Biaryl motifs are essential structural features in several drugs and functional molecules. Cyclic diaryliodonium has been scarcely explored as a bifunctional agent compared to ring opening and annulation reactions. Herein, a three-component cascade approach is developed to synthesize bifunctionalized biaryls employing cyclic diaryliodoniums as a biarylating agent.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, People's Republic of China. Electronic address:
Environ Sci Technol
December 2024
State Ecology and Environment Scientific Observation and Research Station for the Yangtze River Delta at Dianshan Lake, Shanghai Environmental Monitoring Center, Shanghai 200030, China.
Biomass burning is an important source of brown carbon (BrC) aerosols, which influence climate by affecting the Earth's radiative balance. However, the transformation pathways of BrC chromophores, especially in the presence of photochemically active species, such as nitrate, are not well understood. In this study, the nitrate-mediated aqueous-phase photooxidation of three typical BrC chromophores from biomass burning was investigated, including 4-nitrocatechol, 3-nitrosalicylic acid, and 3,4-dinitrophenol.
View Article and Find Full Text PDFJ Am Chem Soc
December 2024
State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China.
Here, we report the enantioselective total syntheses of four diepoxy--kaurane diterpenoids including (-)-Macrocalin B, (-)-Acetyl-macrocalin B, and (-)-Isoadenolin A and the revised structure of (-)-Phyllostacin I, which hinges on the strategic design of a regioselective and stereospecific trapping of a highly reactive [3.2.1]-bridgehead enone intermediate via a tethered intramolecular Diels-Alder reaction.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!