A major QTL for Hessian fly resistance was precisely mapped to a 2.32 Mb region on chromosome 3B of the US hard winter wheat cultivar 'Overland'. The Hessian fly (HF, Mayetiola destructor) is a destructive insect pest of wheat in the USA and worldwide. Deploying HF-resistant cultivars is the most effective and economical approach to control this insect pest. A population of 186 recombinant inbred lines (RILs) was developed from 'Overland' × 'Overley' and phenotyped for responses to HF attack using the HF biotype 'Great Plains'. A high-density genetic linkage map was constructed using 1,576 single nucleotide polymorphism (SNP) markers generated by genotyping-by-sequencing (GBS). Two quantitative trait loci (QTLs) with a significant epistatic effect on HF resistance were mapped to chromosomes 3B (QHf.hwwg-3B) and 7A (QHf.hwwg-7A) in Overland, which are located in similar chromosome regions as found for H35 and H36 in the cultivar 'SD06165', respectively. QHf.hwwg-3B showed a much larger effect on HF resistance than QHf.hwwg-7A. Five and four GBS-SNPs, respectively, in the QHf.hwwg-3B and QHf.hwwg-7A QTL intervals were converted into Kompetitive allele specific polymerase chain reaction (KASP) markers. QHf.hwwg-3B was precisely mapped to a 2.32 Mb interval (2,479,314-4,799,538 bp) using near-isogenic lines (NILs) and RILs that have recombination within the QTL interval. The US winter wheat accessions carrying contrasting alleles at KASP markers KASP-3B4525164, KASP-7A47772047 and KASP-7A65090410 showed significant difference in HF resistance. The combination of the two KASP markers KASP-3B3797431 and KASP-3B4525164 is near-diagnostic for the detection of QHf.hwwg-3B in a US winter wheat panel and can be potentially used for screening the QTL in breeding programs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00122-021-03940-w | DOI Listing |
Theor Appl Genet
January 2025
Wheat Genetics Resource Center, Kansas State University, Manhattan, KS, USA.
Loss-of-function mutations induced by CRISPR-Cas9 in the TaGS3 gene homoeologs show non-additive dosage-dependent effects on grain size and weight and have potential utility for increasing grain yield in wheat. The grain size in cereals is one of the component traits contributing to yield. Previous studies showed that loss-of-function (LOF) mutations in GS3, encoding Gγ subunit of the multimeric G protein complex, increase grain size and weight in rice.
View Article and Find Full Text PDFNat Commun
January 2025
Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
Research on silicon (Si) biogeochemistry and its beneficial effects for plants has received significant attention over several decades, but the reasons for the emergence of high-Si plants remain unclear. Here, we combine experimentation, field studies and analysis of existing databases to test the role of temperature on the expression and emergence of silicification in terrestrial plants. We first show that Si is beneficial for rice under high temperature (40 °C), but harmful under low temperature (0 °C), whilst a 2 °C increase results in a 37% increase in leaf Si concentrations.
View Article and Find Full Text PDFFront Plant Sci
January 2025
College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, China.
Chlorophyll density (ChD) can reflect the photosynthetic capacity of the winter wheat population, therefore achieving real-time non-destructive monitoring of ChD in winter wheat is of great significance for evaluating the growth status of winter wheat. Derivative preprocessing has a wide range of applications in the hyperspectral monitoring of winter wheat chlorophyll. In order to research the role of fractional-order derivative (FOD) in the hyperspectral monitoring model of ChD, this study based on an irrigation experiment of winter wheat to obtain ChD and canopy hyperspectral reflectance.
View Article and Find Full Text PDFPlant Dis
January 2025
USDA-ARS North Central Agricultural Research Laboratory, Brookings, South Dakota, United States;
Soilborne diseases are persistent problems in soybean production. Long-term crop rotation can contribute to soilborne disease management. However, the response of soilborne pathogens to crop rotation is inconsistent, and rotation efficacy is highly variable.
View Article and Find Full Text PDFPlant Methods
January 2025
Institute of Sugar Beet Research, Holtenser Landstraße 77, 37079, Göttingen, Germany.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!