is a bacterial pathogen associated with a wide range of infections and utilizes several strategies to establish and maintain infection including biofilm production, multidrug resistance, and antibiotic tolerance. Multidrug resistance in , as well as in all other bacterial pathogens, is a growing concern. Aminoglycoside resistance, in particular, is a major concern in infections and must be better understood in order to maintain effective clinical treatment. In this review, the various antibiotic resistance and tolerance mechanisms of are explored including: classic mutation driven resistance, adaptive resistance, persister cells, small colony variants, phoenix colonies, and biofilms. It is important to further characterize each of these phenotypes and continue to evaluate antibiotic surviving isolates for novel driving mechanisms, so that we are better prepared to combat the rising number of recurrent and recalcitrant infections.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8387898 | PMC |
http://dx.doi.org/10.1016/j.bioflm.2021.100056 | DOI Listing |
BMC Oral Health
December 2024
Department of Surgery, Aga Khan University Hospital, Karachi, Pakistan.
Background: Endodontic emergencies, often presented as acute pain or swelling, constitute a substantial challenge in dental practice. While effective management emphasizes prompt intervention, antibiotics are typically indicated only when systemic signs and symptoms are present. There is limited research exists on evaluating the knowledge and clinical approach of dental practitioners in managing endodontic emergencies from our region of the world.
View Article and Find Full Text PDFBMC Infect Dis
December 2024
Department of Medical Biochemistry and Microbiology, Biomedical Centre, Uppsala University, Uppsala, Sweden.
Background: Pseudomonas aeruginosa is one of the leading causes of nosocomial infections and the most common multidrug-resistant pathogen. This study aimed to determine antimicrobial resistance patterns, biofilm-forming capacity, and associated factors of multidrug resistance in P. aeruginosa isolates at two hospitals in Addis Ababa, Ethiopia.
View Article and Find Full Text PDFBMC Microbiol
December 2024
Department of Microbiology and Virology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
Background: Pseudomonas aeruginosa is a major cause of healthcare-associated infections (HAIs), particularly in immunocompromised patients, leading to high morbidity and mortality rates. This study aimed to investigate the antimicrobial resistance patterns, virulence gene profiles, and genetic diversity among P. aeruginosa isolates from hospitalized patients in Mazandaran, Iran.
View Article and Find Full Text PDFBMC Microbiol
December 2024
Department of Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran.
Background: Klebsiella pneumoniae is a clinically relevant pathogen that has raised considerable public health concerns. This study aims to determine the presence of beta-lactamase genes and perform molecular genotyping of multidrug-resistant (MDR) K. pneumoniae clinical isolates.
View Article and Find Full Text PDFEnviron Res
December 2024
Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran. Electronic address:
Background: The rapid emergence of co-selection between antimicrobials, including antibiotics and disinfectants, presents a significant challenge to healthcare systems. This phenomenon exacerbates contamination risks and limits the effectiveness of strategies to combat antibiotic resistance in clinical settings. This study aimed to investigate the prevalence and characteristics of bacteria in hospital environments that exhibit co-selection mechanisms and their potential implications for patient health, framed within the One Health perspective.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!