Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
RNA interference (RNAi) therapy has tremendous potential in treating diseases that are characterized by overexpression of genes. However, the biggest challenge to utilize the therapy is to engineer delivery systems that can efficiently transport small interfering RNA (siRNA) to appropriate target sites. Our objective in this study was to develop and evaluate multi-compartmental systems for the oral delivery of siRNA that targets the overexpressed TG2 gene (TG2-siRNA) in the small intestine for the treatment of celiac disease (CD). Two types of multicompartmental systems were developed and evaluated: (1) a solid-in-solid multicompartmental system featuring "nanoparticle in microsphere oral system (NiMOS)" where type B gelatin nanoparticles containing TG2-siRNA (TG2-NiMOS) were encapsulated within poly(ɛ-caprolactone) (PCL) based microspheres, and (2) a solid-in-liquid multicompartmental system, "Nanoparticle-in-Emulsion (NiE)" consisting of type-B gelatin nanoparticles containing TG2-siRNA encapsulated within safflower oil containing water-in-oil-in-water (W/O/W) multiple emulsion (TG2-NiE). Evaluation of the biodistribution and pharmacokinetics (PK) after a single oral dose of siRNA containing multicompartmental systems to C57BL/6 mice showed that TG2-siRNA was delivered to the small intestine (duodenum, jejunum and ileum), and colon with minimal systemic exposure via both TG2-NiE and TG2-NiMOS systems. TG2-siRNA exposure (AUC) in the duodenum, jejunum, ileum and colon was 56.4-, 34.3-, 85.5- and 35.5-fold greater for the TG2-NiMOS formulation, relative to the TG2-NiE formulation. The results of this study suggest that TG2-NiMOS formulation was more superior than TG2-NiE formulation in facilitating intestinal delivery of siRNA via the oral route of administration and can be potentially used in the treatment of CD.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8370315 | PMC |
http://dx.doi.org/10.1089/bioe.2020.0008 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!