Durable hydrophobic materials have attracted considerable interest in the last century. Currently, the most popular strategy to achieve hydrophobic coating durability is through the combination of a perfluoro-compound with a mechanically robust matrix to form a composite for coating protection. The matrix structure is typically large (thicker than 10 μm), difficult to scale to arbitrary materials, and incompatible with applications requiring nanoscale thickness such as heat transfer, water harvesting, and desalination. Here, we demonstrate durable hydrophobicity and superhydrophobicity with nanoscale-thick, perfluorinated compound-free polydimethylsiloxane vitrimers that are self-healing due to the exchange of network strands. The polydimethylsiloxane vitrimer thin film maintains excellent hydrophobicity and optical transparency after scratching, cutting, and indenting. We show that the polydimethylsiloxane vitrimer thin film can be deposited through scalable dip-coating on a variety of substrates. In contrast to previous work achieving thick durable hydrophobic coatings by passively stacking protective structures, this work presents a pathway to achieving ultra-thin (thinner than 100 nm) durable hydrophobic films.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8410847 | PMC |
http://dx.doi.org/10.1038/s41467-021-25508-4 | DOI Listing |
ACS Appl Polym Mater
January 2025
School of Engineering and Materials Sciences, Queen Mary University of London, London, E1 4NS, U.K.
Inverse vulcanization (IV) enables the production of sustainable polymer from sulfur waste, offering hydrophobic, fluorine-free, and superhydrophobic coatings. However, these materials need adhesion improvements for enhanced durability. This study has developed an epoxy-, fluorine-, and metal-free superhydrophobic coating using the spray-coating of carbon nanofibers (CNFs), silica nanoparticles, and IV polymers on glass.
View Article and Find Full Text PDFRSC Adv
January 2025
Research Collaboration Center for Nanocellulose, BRIN-Andalas University Padang 25163 West Sumatera Indonesia.
This study investigates the development and characterization of a novel composite material consisting of polyvinyl alcohol (PVA) integrated with (UG) and zinc oxide (ZnO) as fillers. The synergistic effects of UG and ZnO were investigated, focusing on their ability to enhance the film's properties. UV-vis spectrophotometry demonstrated that the composite film effectively blocked all UV (UV-A and UV-B) and blue light wavelengths.
View Article and Find Full Text PDFMikrochim Acta
January 2025
Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand.
Carcinoembryonic antigen (CEA) and C-reactive protein (CRP) are biomacromolecules known as cancer and inflammatory markers. Thus, they play a crucial role in early cancer diagnosis, post-treatment recurrence detection, and tumor risk assessment. This paper describes the development of an ultrasensitive and selective imprinted paper-based analytical device (PAD) as impedance sensor for determination of CEA and CRP in serum samples for point-of-care testing (POCT).
View Article and Find Full Text PDFMater Horiz
January 2025
New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, India.
The complex synthetic approach and utilization of toxic chemicals restrain the commercialization of numerous existing superhydrophobic materials. This article focuses on the development of a halogen-free superhydrophobic material for self-cleaning applications. HMDS-modified MCM-41 is employed as the base material.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
Condensation is a vital process integral to numerous industrial applications. Enhancing condensation efficiency through dropwise condensation on hydrophobic surfaces is well-documented. However, no surfaces have been able to repel liquids with extremely low surface tension, such as fluorinated solvents, during condensation, as they nucleate and completely wet even the most hydrophobic interfaces.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!