Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1158/1078-0432.CCR-21-1354 | DOI Listing |
Chembiochem
January 2025
Xidian University, School of Life Science and Technology, 266 Xinglong Section of Xifeng Road, 710126, Xi'an, CHINA.
The resistance of cancer cells to apoptosis poses a significant challenge in cancer therapy, driving the exploration of alternative cell death pathways such as pyroptosis, known for its rapid and potent effects. While initial efforts focused on chemotherapy-induced pyroptosis, concerns about systemic inflammation highlight the need for precise activation strategies. Photothermal therapy emerges as a promising non-invasive technique, minimizing pyroptosis-related side effects by targeting tumors spatially and temporally.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
January 2025
Zhejiang Cancer Hospital, Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou 310022, PR China; School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, PR China.
Bioconjug Chem
January 2025
Department of Chemistry, Organic Chemistry Section, Jadavpur University, Kolkata 700032, India.
Herein, a water-soluble, ultrabright, near-infrared (NIR) fluorescent, mechanically interlocked molecules (MIMs)-peptide bioconjugate is designed with dual targeting capabilities. Cancer cell surface overexpressed αβ integrin targeting two RGDS tetrapeptide residues is tethered at the macrocycle of MIMs-peptide bioconjugate via Cu(I)-catalyzed click chemistry on the Wang resin, and mitochondria targeting lipophilic cationic TPP functionality is conjugated at the axle dye. Living carcinoma cell selective active targeting, subsequently cell penetration, mitochondrial imaging, including the ultrastructure of cristae, and real-time tracking of malignant mitochondria by MIMs-peptide bioconjugate (RGDS)-Mito-MIMs-TPP are established by stimulated emission depletion (STED) super-resolved fluorescence microscopy.
View Article and Find Full Text PDFNat Commun
January 2025
Interdisciplinary Science Center, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China.
Fluorogenic RNA aptamers have various applications, including use as fluorescent tags for imaging RNA trafficking and as indicators of RNA-based sensors that exhibit fluorescence upon binding small-molecule fluorophores in living cells. Current fluorogenic RNA:fluorophore complexes typically emit visible fluorescence. However, it is challenging to develop fluorogenic RNA with near-infrared (NIR) fluorescence for in vivo imaging and sensing studies.
View Article and Find Full Text PDFACS Nano
January 2025
Institute of Functional Nano & Soft Materials (FUNSOM), Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, Jiangsu, China.
Thermally activated delayed fluorescence (TADF) materials have received increasing attention from organic electronics to other related fields, such as bioapplications and photocatalysts. However, it remains a challenging task for TADF emitters to showcase the versatility concurrent with high performance in multiple applications. Herein, we first present such a proof-of-concept TADF material, namely, QCN-SAC, through strategically manipulating exciton dynamics.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!