Rapidly developing mid-infrared quantum cascade laser (QCL) technology gives easy access to broadly tunable mid-IR laser radiation at a modest cost. Despite several applications of QCL in the industry, its usage for spectroscopic investigation of synthetically relevant organic compounds has been limited. Here, we report the application of an external cavity, continuous wave, mid-IR QCL to cryogenic ion vibrational predissociation spectroscopy to analyze a set of large organic molecules, organometallic complexes, and isotopically labeled compounds. The obtained spectra of test molecules are characterized by a high signal-to-noise ratio and low full width at half-maximum-values, allowing the assignment of two compounds with just a few wavenumber difference. Data generated by cw-QCL and spectra produced by another standard Nd:YAG difference-frequency generation system are compared and discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0058625DOI Listing

Publication Analysis

Top Keywords

continuous wave
8
quantum cascade
8
cascade laser
8
large organic
8
application continuous
4
wave quantum
4
laser combination
4
combination civp
4
civp spectroscopy
4
spectroscopy investigation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!