Non-thermal plasma multi-jet platform based on a flexible matrix.

Rev Sci Instrum

Department of Mechanical and Aerospace Engineering, George Washington University, 800 22nd Street, Northwest, Washington, DC 20052, USA.

Published: August 2021

A new plasma source design that merges the main characteristics of capacitive dielectric barrier discharge (DBD) and cold atmospheric plasma jet (CAPJ) is discussed. The DBD system contains a flexible, porous matrix consisting of silica aerogel, which is comprised between two biased electrodes. The helium flow supply subjected to a sinusoidal voltage of around 5 kV in amplitude and 15 kHz in frequency provides a set of plasma jets that propagates more than 1 cm beyond the active DBD region. The studied plasma multi-jet system consists of an array of three aligned jets that flow in the laminar regime, and it is intended for treating the surfaces of 3D objects and large areas. CAPJ performance is discussed as a hypothetical morphing source in flat and bent configurations. Electrical characterization and optical emission spectroscopy diagnostics have provided current-voltage waveforms and the composition of the CAPJ through the aerogel layer, respectively. This novel source is promising for biomedical applications that require full adaptation of plasma parameters to delicate samples, such as wound healing and treatment of surgical margins in plasma-based cancer surgery.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0057438DOI Listing

Publication Analysis

Top Keywords

plasma multi-jet
8
plasma
5
non-thermal plasma
4
multi-jet platform
4
platform based
4
based flexible
4
flexible matrix
4
matrix plasma
4
plasma source
4
source design
4

Similar Publications

In the evolving three-dimensional (3D) printing technology, the involvement of different materials in any new 3D printing process necessitates a thorough evaluation of the product's biocompatibility for biomedical application. Here, we examined the ability of Multi Jet Fusion (MJF)-printed PA-12 to support cell proliferation and osteogenesis. Our results show that leachate from MJF-printed PA-12 does not inhibit the growth of L929 fibroblast and MC3T3e1 osteoblast.

View Article and Find Full Text PDF

Flexible plasma multi-jet source operated in radial discharge configuration.

Rev Sci Instrum

December 2021

Department of Mechanical and Aerospace Engineering, George Washington University, 800 22nd Street, Northwest, Washington, DC 20052, USA.

Following up on a recent study describing a flexible plasma source operated in planar geometry, the performance of a cold atmospheric plasma jet (CAPJ) matrix emanating radially from a soft cylindrical surface in the open air is presented. The plasma device, which has a set of small outlets produced in its side surface, has a length of 12 cm and an outer diameter of 5.4 cm.

View Article and Find Full Text PDF

Non-thermal plasma multi-jet platform based on a flexible matrix.

Rev Sci Instrum

August 2021

Department of Mechanical and Aerospace Engineering, George Washington University, 800 22nd Street, Northwest, Washington, DC 20052, USA.

A new plasma source design that merges the main characteristics of capacitive dielectric barrier discharge (DBD) and cold atmospheric plasma jet (CAPJ) is discussed. The DBD system contains a flexible, porous matrix consisting of silica aerogel, which is comprised between two biased electrodes. The helium flow supply subjected to a sinusoidal voltage of around 5 kV in amplitude and 15 kHz in frequency provides a set of plasma jets that propagates more than 1 cm beyond the active DBD region.

View Article and Find Full Text PDF

We analyze the high-order harmonics generation using 1 kHz and 100 kHz lasers by ablating different rotating targets. We demonstrate the high average flux of short-wavelength radiation using the latter laser, while comparing the plasma formation conditions at different pulse repetition rates. The analysis of harmonic stability in the case of the 100 kHz experiments showed the two-fold decay of the 27 harmonic generating in silver plasma after 3.

View Article and Find Full Text PDF

We theoretically analyze the phase-matching of high-order harmonic generation (HHG) in multi-jet plasmas and find the harmonic orders for which the quasi-phase-matching (QPM) is achieved depending on the parameters of the plasma and the generating beam. HHG by single- and two-color generating fields is analyzed. The QMP is studied experimentally for silver, indium and manganese plasmas using near IR and mid-IR laser fields.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!