Studies of electron transfer at the population level veil the nature of the cell itself; however, in situ probing of the electron transfer dynamics of individual cells is still challenging. Here we propose label-free structural color microscopy for this aim. We demonstrate that MR-1 cells show unique structural color scattering, changing with the redox state of cytochrome complexes in the outer membrane. It enables quantitatively and noninvasive studies of electron transfer in single microbial cells during bioelectrochemical activities, such as extracellular electron transfer (EET) on a transparent single-layer graphene electrode. Increasing the applied potential leads to the associated EET current, accompanied by more oxidized cytochromes. The high spatiotemporal resolution of the proposed method not only demonstrates the large diversity in EET activity among microbial cells but also reveals the subcellular asymmetric distribution of active cytochromes in a single cell. We anticipate that it provides a potential platform for further exploring the electron transfer mechanism of subcellular structure.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.nanolett.1c02828DOI Listing

Publication Analysis

Top Keywords

electron transfer
24
microbial cells
12
structural color
12
probing electron
8
single microbial
8
single-layer graphene
8
color microscopy
8
studies electron
8
electron
6
transfer
6

Similar Publications

This study reports a novel ratiometric fluorescence sensor based on a tetraphenylethylene-bipyridine covalent organic framework (TPE-Bpy-COF) for the sensitive detection of Cu, leveraging the unique coordination properties of the bipyridine moieties. The interaction between Cu and the nitrogen atoms in the bipyridine units induces fluorescence quenching at 500 nm through an efficient host-guest electron transfer mechanism, where excited-state electrons from the COF framework are transferred to the vacant orbitals of Cu. Upon excitation at 410 nm, the sensor exhibits a primary emission peak at 500 nm, which is quenched in the presence of Cu, while an overtone peak at 820 nm remains stable, serving as an internal reference for ratiometric measurements and significantly enhancing the accuracy and reliability of the sensor.

View Article and Find Full Text PDF

Synthesis of IrCu/CoO hybrid nanostructures and their enhanced catalytic properties toward oxygen evolution reaction under both acidic and alkaline conditions.

Dalton Trans

January 2025

Department of Chemical Engineering, Integrated Engineering Major, College of Engineering, Kyung Hee University, Yongin, 17104, Republic of Korea.

Oxygen evolution reaction (OER) is a half-reaction that occurs at the anode during water electrolysis, and owing to its slow kinetics, it is the rate-limiting step in the process. Alloying with transition metal and combining with transition metal oxide supports are effective methods for modifying the electronic structure of noble metal catalysts and improving their catalytic properties. In this study, we synthesized IrCu/CoO hybrid nanostructures by attaching IrCu alloy nanoparticles onto CoO nanosheets.

View Article and Find Full Text PDF

The effect of atomic vibration on thermal transport in diatomic semiconductors investigated molecular dynamics.

Nanoscale

January 2025

Laboratory for Multiscale Mechanics and Medical Science, SV LAB, School of Aerospace, Xi'an Jiaotong University, Xi'an 710049, China.

Based on the molecular dynamics (AIMD), the temperature and velocity statistics of diatomic semiconductors were proposed to be classified by atomic species. The phase differences resulting from lattice vibrations of different atoms indicated the presence of anharmonicity at finite atomic temperatures. To further explore the electronic properties, the effect of temperature on electrostatic potential field vibrations in semiconductors was studied, and the concept of electrostatic potential oscillation (EPO) at finite atomic temperature was introduced.

View Article and Find Full Text PDF

A Schiff-base-modified Cu nanocluster with redox dual-catalytic sites and fluorescence sensing for the degradation and detection of atrazine.

Mater Horiz

January 2025

State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China.

Atrazine is a widely used and heavily contaminating pesticide. In this work, we designed and synthesized a versatile catalyst for the degradation and fluorescent detection of atrazine. This catalyst consists of Cu clusters modified by a Schiff base.

View Article and Find Full Text PDF

Optimizing LiNO Conversion through a Defective Carbon Matrix as Catalytic Current Collectors for Highly Durable and Fast-Charging Li Metal Batteries.

Nano Lett

January 2025

Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.

Lithium nitrate (LiNO) stands as an effective electrolyte additive, mitigating the degradation of Li metal anodes by forming a LiN-rich solid electrolyte interphase (SEI). However, its conversion kinetics are impeded by energy-consuming eight-electron transfer reactions. Herein, an isoreticular metal-organic framework-8-derived carbon is incorporated into the carbon cloth (RMCC) as a catalytic current collector to regulate the LiNO conversion kinetics and boost LiN generation inside the SEI.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!