Fibrous activated carbon has attracted emerging research interests due to its remarkable adsorption performance for volatile organic compounds (VOCs). Though this adsorption behavior for VOCs is closely related to the pore structure on the surface of activated carbon fiber (ACF), few researchers paid attentions to the influence of textural properties of this adsorption process. Especially, cotton-based activated carbon fiber (CACF) for adsorbing benzene pollutant is rarely reported. Herein, in order to develop a high-performance adsorbent for the removal of VOCs pollutants, this work studied the influence of textural properties of CACF on the adsorption of benzene. The results showed that the increase of carbonization temperature would lead to the reduction of mesopores but the increase of micropores for CACF; the embedment of phosphoric acid and its derivatives into the carbon layers contributed to the formation of pore structure for CACF; furthermore, specific surface area of CACF can also be enlarged by increasing the concentration of phosphoric acid. More importantly, it was found that the adsorption capacity of CACF for benzene was strongly dependent on the specific surface area and volume of micropores within CACF because micropores can provide more favorable binding sites. This adsorption process preferred to occur on the wall of micropores, then the accumulated benzene would slowly fill the pores. Interestingly, the decrease of pore size of micropores can unexpectedly improve the affinity of CACF to benzene on the contrary. This work provides a new strategy to develop porous structured ACF materials for the high-performance adsorption of VOCs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2021.131110 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Department of Chemical Engineering, University of Patras, Patras 26504, Greece.
Energy-efficient separation of light alkanes from alkenes is considered as one of the most important separations of the chemical industry today due to the high energy penalty associated with the applied conventional cryogenic technologies. This study introduces fluorine-doped activated carbon adsorbents, where elemental fluorine incorporation into the carbon matrix plays a unique role in achieving high ethane selectivity. This enhanced selectivity arises from specific interactions between surface-doped fluorine atoms and ethane molecules, coupled with porosity modulation.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Republic of Korea.
Solid polymer electrolytes (SPEs) for symmetrical supercapacitors are proposed herein with activated carbon as electrodes and optimized solid polymer electrolyte membranes, which serve as the separators and electrolytes. We propose the design of a low-cost solid polymer electrolyte consisting of guanidinium nitrate (GuN) and poly(ethylene oxide) (PEO) with poly(vinylpyrrolidone) (PVP). Using the solution casting approach, blended polymer electrolytes with varying GuN weight percentage ratios of PVP and PEO are prepared.
View Article and Find Full Text PDFMolecules
January 2025
Department of Environment and Agricultural Natural Resources, College of Agricultural and Food Sciences, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia.
Two activated carbons were synthesized from baobab seeds (BSs) using two activators, sulfuric acid (BS-AAC) and sodium hydroxide (BS-BAC), for dye removal from aqueous solutions. Malachite green (MG) was used as a model dye. SEM, FTIR, TGA, and surface area were used to characterize the feedstock and synthesis activated carbons.
View Article and Find Full Text PDFMolecules
January 2025
College of Land Resources and Environment, Jiangxi Agricultural University, Nanchang 330045, China.
To address cadmium pollution in China's cultivated land, chitosan, inorganic and organic selenium were used to modify rice husk charcoal for cadmium inhibition. Basic physicochemical properties of rice husk carbons were characterized (BET, FTIR, XRD, Zeta potential). Kinetic and isothermal adsorption experiments studied the adsorption of Cd by modified biochar under different pH and dosages.
View Article and Find Full Text PDFMolecules
January 2025
Orlen Unicre a.s., Revolucňí 1521/84, 400 01 Ústí nad Labem, Czech Republic.
The increasing global population and urbanization have led to significant challenges in waste management, particularly concerning vacuum blackwater (VBW), which is the wastewater generated from vacuum toilets. Traditional treatment methods, such as landfilling and composting, often fall short in terms of efficiency and sustainability. Anaerobic digestion (AD) has emerged as a promising alternative, offering benefits such as biogas production and digestate generation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!