Due to the beam cleanup effect, brightness enhancement (BE) can be achieved in a Raman fiber amplifier (RFA) based on multimode (MM) graded-index (GRIN) fiber. In this Letter, a novel, to the best of our knowledge, diagnostic tool of mode decomposition (MD) based on a stochastic parallel gradient descent algorithm is demonstrated to observe the beam cleanup effect in a GRIN-fiber-based RFA for the first time, to our knowledge. During output power boosting up to 405 W at 1130 nm, the output beam quality factor improves from 3.45 to 2.88, with a BE factor of 10.5. The MD results based on the near-field beam profiles from RFA indicate that the modal weight of the fundamental mode increases from 74.5% to 87%, confirming that the fundamental mode dominates with higher Raman gain. Moreover, the beam quality is found to be limited by the existence of a higher-order (Laguerre-Gaussian) mode, which is insensitive to the beam cleanup effect. The correlation coefficient reaches over 0.98 for all MD results. Thus, the accuracy of the MD method is high enough to provide further valuable insight into the physics of spatiotemporal beam dynamics in MM GRIN fiber.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OL.433750DOI Listing

Publication Analysis

Top Keywords

beam cleanup
16
beam
8
mode decomposition
8
grin fiber
8
beam quality
8
fundamental mode
8
mode
5
cleanup high-power
4
high-power graded-index-fiber
4
graded-index-fiber raman
4

Similar Publications

We experimentally study the spatial beam profile and the spectral broadening at the output of a multimode air-silica microstructure fiber taper, used along the direction of an increasing fiber diameter. By using a laser pump at 1064 nm emitting 60 ps Gaussian beam pulses, we observed a competition between Raman beam cleanup and Kerr beam self-cleaning: the multimode frequency conversion process permits to generate spectral sidebands with frequency detuning from the pump that are difficult to obtain in standard graded-index multimode fibers. The generated supercontinuum spans from 500 nm up to 2.

View Article and Find Full Text PDF

We report on a comprehensive experimental investigation into the spatial-spectral complexity of the laser beam during Kerr-induced beam self-cleaning in graded-index multimode fibers. We demonstrate the self-cleaning of beams using both transform-limited and chirped femtosecond pulses. By utilizing the spectrally resolved imaging technique, we examine variations in beam homogeneity during the beam cleanup process and reveal correlations observed among spatial beam profiles at different wavelengths for the various cleaned pulses.

View Article and Find Full Text PDF

Multimode fibres provide a promising platform for boosting the capacity of fibre links and the output power of fibre lasers. The complex spatiotemporal dynamics of multimode beams may be controlled in spatial and temporal domains via the interplay of nonlinear, dispersive and dissipative effects. Raman nonlinearity induces beam cleanup in long graded-index fibres within a laser cavity, even for CW Stokes beams pumped by highly-multimode laser diodes (LDs).

View Article and Find Full Text PDF

Beam self-cleaning (BSC) in graded-index (GRIN) multimode fibers (MMFs) has been recently reported by different research groups. Driven by the interplay between Kerr effect and beam self-imaging, BSC counteracts random mode coupling, and forces laser beams to recover a quasi-single mode profile at the output of GRIN fibers. Here we show that the associated self-induced spatiotemporal reshaping allows for improving the performances of nonlinear fluorescence (NF) microscopy and endoscopy using multimode optical fibers.

View Article and Find Full Text PDF

Due to the beam cleanup effect, brightness enhancement (BE) can be achieved in a Raman fiber amplifier (RFA) based on multimode (MM) graded-index (GRIN) fiber. In this Letter, a novel, to the best of our knowledge, diagnostic tool of mode decomposition (MD) based on a stochastic parallel gradient descent algorithm is demonstrated to observe the beam cleanup effect in a GRIN-fiber-based RFA for the first time, to our knowledge. During output power boosting up to 405 W at 1130 nm, the output beam quality factor improves from 3.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!