Cryo-EM density maps adjustment for subtraction, consensus and sharpening.

J Struct Biol

Centro Nac. Biotecnología (CSIC), c/Darwin, 3, 28049 Cantoblanco, Madrid, Spain; Univ. San Pablo - CEU, Campus Urb. Montepríncipe, 28668 Boadilla del Monte, Madrid, Spain. Electronic address:

Published: December 2021

Electron cryomicroscopy (cryo-EM) has emerged as a powerful structural biology instrument to solve near-atomic three-dimensional structures. Despite the fast growth in the number of density maps generated from cryo-EM data, comparison tools among these reconstructions are still lacking. Current proposals to compare cryo-EM data derived volumes perform map subtraction based on adjustment of each volume grey level to the same scale. We present here a more sophisticated way of adjusting the volumes before comparing, which implies adjustment of grey level scale and spectrum energy, but keeping phases intact inside a mask and imposing the results to be strictly positive. The adjustment that we propose leaves the volumes in the same numeric frame, allowing to perform operations among the adjusted volumes in a more reliable way. This adjustment can be a preliminary step for several applications such as comparison through subtraction, map sharpening, or combination of volumes through a consensus that selects the best resolved parts of each input map. Our development might also be used as a sharpening method using an atomic model as a reference. We illustrate the applicability of this algorithm with the reconstructions derived of several experimental examples. This algorithm is implemented in Xmipp software package and its applications are user-friendly accessible through the cryo-EM image processing framework Scipion.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jsb.2021.107780DOI Listing

Publication Analysis

Top Keywords

density maps
8
cryo-em data
8
grey level
8
level scale
8
cryo-em
5
adjustment
5
volumes
5
cryo-em density
4
maps adjustment
4
adjustment subtraction
4

Similar Publications

Conductive metal-organic frameworks (MOFs) are crystalline, intrinsically porous materials that combine remarkable electrical conductivity with exceptional structural and chemical versatility. This rare combination makes these materials highly suitable for a wide range of energy-related applications. However, the electrical conductivity in MOF-based devices is often limited by the presence of different types of structural disorder.

View Article and Find Full Text PDF

Background: Electrographic flow (EGF) mapping allows for the visualization of global atrial wavefront propagations. One mechanism of initiation and maintenance of atrial fibrillation (AF) is stimulation from EGF-identified focal sources that serve as driver sites of fibrillatory conduction. Electrographic flow consistency (EGFC) further quantifies the concordance of observed wavefront patterns, indicating that a healthier substrate shows more organized wavefront propagation and higher EGFC.

View Article and Find Full Text PDF

Background: Few clinical studies of atrial fibrillation (AF) have focused on Asian patients; data are lacking on current mapping and ablation strategies in the Asia Pacific region (APAC).

Objective: The HD Mapping Observational Study (NCT04022954) was designed to characterize electroanatomic mapping (EAM) with market-released high-density mapping (HDM) catheters in subjects with AF in APAC.

Methods: Subjects undergoing HDM and indicated for radiofrequency ablation (RFA) to treat AF were prospectively enrolled in APAC.

View Article and Find Full Text PDF

Objective: to analyze the spatial-temporal pattern of childbirths and flow of postpartum women assisted at a regional reference maternity hospital.

Methods: ecological study of 4,081 childbirths, between September 2018 and December 2021, at a public maternity hospital in the Baixo Tocantins region, Pará, Brazil. With data collected from five sources, a geographic database was constructed, and spatial analysis was used with Kernel density interpolator.

View Article and Find Full Text PDF

Background: Multiple sclerosis (MS) is one of the most common disabling central nervous system diseases affecting young adults. Magnetic resonance imaging (MRI) is an essential tool for diagnosing and following up multiple sclerosis. Over the years, many MRI techniques have been developed to improve the sensitivity of MS disease detection.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!