7-Hydroxyneolamellarin A (7-OH-Neo A, 1), a natural marine product derived from sponge Dendrilla nigra, was first synthesized with 10% overall yield under the instruction of convergent synthetic strategy. We found that 7-OH-Neo A could attenuate the accumulation of hypoxia-inducible factor-1α (HIF-1α) protein and inhibit vascular epidermal growth factor (VEGF) transcriptional activity, showing well inhibitory effect on HIF-1 signaling pathway. Meantime, 7-OH-Neo A had the well anti-tumor activities, such as inhibiting tumor angiogenesis, proliferation, migration and invasion. More importantly, 7-OH-Neo A exhibited profound anti-tumor effect in mice breast cancer model by suppressing the accumulation of HIF-1α in tumor tissue. Mechanism study demonstrated that 7-OH-Neo A might target the protein with the ability of stabilizing HIF-1α in hypoxia. Due to the excellent water solubility, superior anti-tumor activity and good biocompatibility, 7-OH-Neo A shows the promising potential for being exploited as an anti-tumor agent in near future.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bmcl.2021.128338 | DOI Listing |
Int J Mol Sci
December 2024
Centre for Diabetes, Obesity and Endocrinology (CDOE), The Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW 2145, Australia.
Type 1 diabetes (T1D) is caused by the immune-mediated loss of pancreatic β-cells. Hypoxia-inducible factor 1α (HIF-1α) is a transcription factor which is crucial for cellular responses to low oxygen. Here, we investigate the role of β-cell HIF-1α in β-cell death and diabetes after exposure to multiple low-dose streptozotocin (MLDS).
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Laboratory of Regulation of Brain Neuronal Functions, Pavlov Institute of Physiology, Russian Academy of Sciences, Makarova emb. 6, 199034 Saint-Petersburg, Russia.
Prenatal hypoxia, often accompanied by maternal glucocorticoid stress, can predispose offspring to neurological disorders in adulthood. If placental ischemia (PI) primarily reduces fetal oxygen supply, the maternal hypoxia (MH) model also elicits a pronounced fetal glucocorticoid exposure. Here, we compared MH and PI in rats to distinguish their unique and overlapping effects on embryonic and newborn brain development.
View Article and Find Full Text PDFJ Clin Med
December 2024
Second Department of Internal Medicine, University of Toyama, Toyama 930-8555, Japan.
Hypoxia-inducible factor-prolyl hydroxylase (HIF-PH) inhibitors have been developed as a treatment for renal anemia. However, their therapeutic impact on patients with concomitant heart failure remains uncertain. We investigated the impact of HIF-PH inhibitors on improving renal anemia and associated clinical outcomes in patients with heart failure.
View Article and Find Full Text PDFCells
December 2024
Department of Biostatistics, Medical Faculty, EskiÅŸehir Osmangazi University, 26040 EskiÅŸehir, Turkey.
An embryo culture medium is a specialized set of ambient conditions, technological equipment, and nutrients that embryos require to grow properly. We aimed to investigate the , , and gene expression differences between developing and non-developing embryos in spent embryo culture medium. , , and gene expressions were determined from the spent embryo culture medium containing developing and non-developing embryos of 20 normoresponder patients admitted to the Bahçeci Umut IVF Center.
View Article and Find Full Text PDFBiomedicines
December 2024
Division of Gastroenterology and Nephrology, Faculty of Medicine, Tottori University, Nishi-cho 36-1, Yonago 683-8504, Tottori, Japan.
Background/objectives: Renal anemia is one of the major complications associated with chronic kidney disease (CKD). Erythropoietin-stimulating agents (ESAs) are commonly used; however, some patients exhibit resistance. Hypoxia-inducible factor prolyl-hydroxylase inhibitors (HIF-PHIs) have emerged as a novel treatment for renal anemia, enhancing erythropoiesis and iron metabolism.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!