Synthetic DNA walkers are artificially designed DNA self-assemblies with the capability of performing quasi-mechanical movement at the micro/nanoscale and have shown extensive promise in biosensing, intracellular imaging, and drug delivery. However, DNA walkers are usually constructed by covalently or coordinately binding DNA strands specifically to hard surfaces, thereby greatly limiting their movement efficiency. Herein, we report an intraparticle and interparticle transferable DNA walker (dynamic micelle-supported DNA walker, DM-walker) constructed by immobilizing walking tracks and walking arms onto the corona of DNA micelles according to the principle of Watson-Crick base pairing. The DNAzyme-powered walking arm can drive the intraparticle and interparticle movements of the DM-walker due to the fact that the dynamic structure of the DNA micelle helps overcome the spatial barrier between the arms and tracks in the system, resulting in high walking efficiency. Moreover, the whole DM-walker can be constructed by self-assembly, getting rid of the tedious process and low efficiency of fixing DNA strands on hard surfaces. Taking miRNA-10b as a model target, the DM-walker demonstrates high walking efficiency (reaction duration of 20 min) and high sensitivity (LOD of 87 pM). The proposed DM-walker provides an avenue to develop novel DNA walkers on dynamic interfaces and holds great potential in clinical diagnosis.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.1c02104DOI Listing

Publication Analysis

Top Keywords

intraparticle interparticle
12
dna
12
dna walker
12
dna walkers
12
interparticle transferable
8
transferable dna
8
dna micelles
8
dna strands
8
strands hard
8
hard surfaces
8

Similar Publications

Strain engineering in two-dimensional nanomaterials holds significant potential for modulating the lattice and band structure, particularly through localized strain, which enables modulation at specific regions. Despite the remarkable effects of local strain, the relationships among local strain, spatial correlation of photogenerated charge carriers, and photocatalytic performance remain elusive. The current study coupled single-molecule localization microscopy with coordinate-based colocalization (CBC) analysis to explain these relationships.

View Article and Find Full Text PDF

LiNiCoAlO (NCA95) is charged up to 4.6 V to study its structural stability at a highly delithiated state using transmission electron microscopy (TEM). The TEM analysis shows that the localized depletion of Li ions near the surface triggers the transition from the H3 phase to the H4 phase with the H4 phase with the O1 stacking appearing as a series of stacking faults even at 4.

View Article and Find Full Text PDF

Nonalkaline Fabrication of Al-Based Metal-Organic Frameworks with Tailored Water Sorption Properties via Polymeric Hydroxy-Aluminum Basicity Modulation.

ACS Appl Mater Interfaces

November 2024

College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, P. R. China.

Metal-organic frameworks (MOFs) are porous crystalline materials composed of metallic nodes and organic ligands, demonstrating increasing potential in water harvesting in arid and semiarid regions. This study presents a nonalkaline, water-based, and scalable synthesis strategy designed to adjust the water sorption properties of aluminum-based MOFs (Al-MOFs), specifically, AlFum and MOF-303, by modifying the basicity of the metal source, polymeric hydroxy-aluminum, as an alternative. Characterizations, including X-ray diffraction (XRD), scanning electron microscopy (SEM), and thermogravimetric analyses (TGA), confirmed the successful synthesis of Al-MOFs.

View Article and Find Full Text PDF

In geometrically frustrated assemblies local intersubunit misfits propagate to intra-assembly strain gradients, giving rise to anomalous self-limiting assembly thermodynamics. Here we use theory and coarse-grained simulation to study a recently developed class of "curvamer" particles, flexible shell-like particles that exhibit self-limiting assembly due to the build up of curvature deformation in cohesive stacks. To address a generic, yet poorly understood aspect of frustrated assembly, we introduce a model of curvamer assembly that incorporates both intraparticle shape deformation as well as compliance of interparticle cohesive gaps, an effect we can attribute to a finite range of attraction between particles.

View Article and Find Full Text PDF

Carbonate microporosity can vary significantly across depositional lithofacies and cycles, owing primarily to the high degree of heterogeneity in their pore sizes, pore throat radius, geometry, and connectivity. This is further compounded by the complex diagenetic alterations during various stages of burial. In addition, the presence of micropores, which are abundant in carbonate rocks, but not visible using conventional techniques, is challenging to characterize.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!