Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The elimination of hazardous compounds in chemical wastes can be a complex and technically demanding task. In the search for environmental-friendly technologies, fungal mediated remediation and removal procedures are of concern. In this study, we investigated whether there are fungal species that can survive and grow on solely amine-containing compounds. One compound containing a primary amine group; 2-diethylaminoethanol, one compound with a primary amide group; 2,6-dichlorobenzamide (BAM), and a third compound containing a quaternary ammonium group; N3-trimethyl(2-oxiranyl)methanaminium chloride, were selected. The choice of these compounds was motivated by their excessive use in large scale manufacturing of protein separation media (2-diethylaminoethanol and the quaternary amine). 2,6-dichlorobenzamide, the degradation product of the herbicide 2,6-dichlorobenzonitrile (dichlobenil), was chosen since it is an extremely recalcitrant compound. Utilising part of the large fungal diversity in Northern European forests, a screening study using 48 fungal isolates from 42 fungal species, including saprotrophic and mycorrhizal fungi, was performed to test for growth responses to the chosen compounds. The ericoid (ERM) mycorrhizal fungus Rhizoscyphus ericae showed the best overall growth on 2-diethylaminoethanol and BAM in the 1-20 g L-1 concentration range, with a 35-fold and 4.5-fold increase in biomass, respectively. For N3-trimethyl(2-oxiranyl)methanaminium chloride, the peak growth occurred at 1 g L-1. In a second experiment, including three of the most promising fungi (Laccaria laccata, Hygrophorus camarophyllus and Rhizoscyphus ericae) from the screening experiment, a simulated process water containing 1.9% (w/v) 2-diethylaminoethanol and 0.8% (w/v) N3-trimethyl(2-oxiranyl)methanaminium chloride was used. Laccaria laccata showed the best biomass increase (380%) relative to a control, while the accumulation for Rhizoscyphus ericae and Hygrophorus camarophyllus were 292% and 136% respectively, indicating that mycorrhizal fungi can use amine- and amide-containing substrates as nutrients. These results show the potential of certain fungal species to be used in alternative green wastewater treatment procedures.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8409640 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0244910 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!