Information diffusion prediction is an important task, which studies how information items spread among users. With the success of deep learning techniques, recurrent neural networks (RNNs) have shown their powerful capability in modeling information diffusion as sequential data. However, previous works focused on either microscopic diffusion prediction, which aims at guessing who will be the next influenced user at what time, or macroscopic diffusion prediction, which estimates the total numbers of influenced users during the diffusion process. To the best of our knowledge, few attempts have been made to suggest a unified model for both microscopic and macroscopic scales. In this article, we propose a novel full-scale diffusion prediction model based on reinforcement learning (RL). RL incorporates the macroscopic diffusion size information into the RNN-based microscopic diffusion model by addressing the nondifferentiable problem. We also employ an effective structural context extraction strategy to utilize the underlying social graph information. Experimental results show that our proposed model outperforms state-of-the-art baseline models on both microscopic and macroscopic diffusion predictions on three real-world datasets.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TNNLS.2021.3106156 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!