A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Deep Learning: An Update for Radiologists. | LitMetric

Deep Learning: An Update for Radiologists.

Radiographics

From the Department of Radiology, Keck School of Medicine of the University of Southern California, Los Angeles, Calif (P.M.C.); Research Center (E.M., F.P.R., S.K., A.T.) and Department of Radiology (A.T.), Centre Hospitalier de l'Université de Montréal, 1058-2117 rue Saint-Denis, Montréal, QC, Canada H2X 3J4; Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, Calif (R.Y.); Warren Alpert Medical School, Brown University, Providence, RI (I.P.); Department of Medical Imaging, CISSS Lanaudière, Université Laval, Joliette, Québec, Canada (A.C.C., S.K.); École Polytechnique, Montréal, Québec, Canada (F.P.R.); and AFX Medical, Montréal, Québec, Canada (G.C.).

Published: November 2021

Deep learning is a class of machine learning methods that has been successful in computer vision. Unlike traditional machine learning methods that require hand-engineered feature extraction from input images, deep learning methods learn the image features by which to classify data. Convolutional neural networks (CNNs), the core of deep learning methods for imaging, are multilayered artificial neural networks with weighted connections between neurons that are iteratively adjusted through repeated exposure to training data. These networks have numerous applications in radiology, particularly in image classification, object detection, semantic segmentation, and instance segmentation. The authors provide an update on a recent primer on deep learning for radiologists, and they review terminology, data requirements, and recent trends in the design of CNNs; illustrate building blocks and architectures adapted to computer vision tasks, including generative architectures; and discuss training and validation, performance metrics, visualization, and future directions. Familiarity with the key concepts described will help radiologists understand advances of deep learning in medical imaging and facilitate clinical adoption of these techniques. RSNA, 2021.

Download full-text PDF

Source
http://dx.doi.org/10.1148/rg.2021200210DOI Listing

Publication Analysis

Top Keywords

deep learning
24
learning methods
16
machine learning
8
computer vision
8
neural networks
8
learning
7
deep
6
learning update
4
update radiologists
4
radiologists deep
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!