Novel HIF-1-target gene isthmin1 contributes to hypoxia-induced hyperpermeability of pulmonary microvascular endothelial cells monolayers.

Am J Physiol Cell Physiol

State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing, People's Republic of China.

Published: October 2021

Hypoxia-induced pulmonary microvascular endothelial cell (PMVEC) monolayers hyperpermeability is vital for vascular leakage, which participates in vascular diseases, such as acute lung injury (ALI) and high-altitude pulmonary edema (HAPE). We previously observed that PMVEC permeability was markedly elevated in hypoxia when cocultured with primary type II alveolar epithelial cells (AECII) in which isthmin1 (ISM1) was highly upregulated. However, whether the upregulation of ISM1 plays a role in hypoxia-induced PMVEC hyperpermeability is unclear. In this study, we assessed the role of AECII-derived ISM1 in hypoxia-induced PMVEC hyperpermeability with an AECII/PMVEC coculture system and uncovered the underlying mechanism whereby hypoxia stimulates ISM1 gene expression. We found that ISM1 gene expression was upregulated in cultured AECII cells exposed to hypoxia (3% O) and that AECII-derived ISM1 participated in hypoxia-induced hyperpermeability of PMVEC monolayers, as small interference RNA (siRNA)-mediated knockdown of ISM1 in AECII markedly attenuated the increase in PMVEC permeability in coculture system under hypoxia. In addition, we confirmed that ISM1 was regulated by hypoxia-inducible factor-1α (HIF1α) according to the evidence that silencing of HIF1α inhibited the hypoxia-mediated upregulation of ISM1. Mechanismly, overexpression of HIF1α transcriptionally activated ISM1 gene expression by directly binding to the conserved regulatory elements upstream of the locus. We identified a novel HIF-1-target gene ISM1, which involves in hyperpermeability of pulmonary microvascular endothelial cell monolayers under hypoxia. Our in vitro cell experiments implied that the upregulated ISM1 derived from alveolar epithelium might be a vital modulator in hypoxia-induced endothelial hyperpermeability and thereby implicates with hypoxic pulmonary-related diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpcell.00124.2021DOI Listing

Publication Analysis

Top Keywords

pulmonary microvascular
12
microvascular endothelial
12
ism1
12
ism1 gene
12
gene expression
12
novel hif-1-target
8
hif-1-target gene
8
hypoxia-induced hyperpermeability
8
hyperpermeability pulmonary
8
endothelial cell
8

Similar Publications

Vascular HIF2 Signaling Prevents Cardiomegaly, Alveolar Congestion, and Capillary Remodeling During Chronic Hypoxia.

Arterioscler Thromb Vasc Biol

January 2025

Metabolic and Immune Diseases Department, Biomedical Research Institute Sols-Morreale (IIBM), National Research Council (CSIC), Autonoma University of Madrid, Spain (T.A.-G., S.M.-T., R.C.-M., S.U.-B., S.M.-P.).

Background: Hypoxia is associated with the onset of cardiovascular diseases including cardiac hypertrophy and pulmonary hypertension. HIF2 (hypoxia-inducible factor 2) signaling in the endothelium mediates pulmonary arterial remodeling and subsequent elevation of the right ventricular systolic pressure during chronic hypoxia. Thus, novel therapeutic opportunities for pulmonary hypertension based on specific HIF2 inhibitors have been proposed.

View Article and Find Full Text PDF

The pulmonary vasculature plays a pivotal role in the development and progress of chronic lung diseases. Due to limitations of conventional two-dimensional histological methods, the complexity and the detailed anatomy of the lung blood circulation might be overlooked. In this study, we demonstrate the practical use of optical serial block face imaging (SBFI), ex vivo microcomputed tomography (micro-CT), and nondestructive optical tomography for visualization and quantification of the pulmonary circulation's 3D architecture from macro- to micro-structural levels in murine lung samples.

View Article and Find Full Text PDF

Leptomeningeal carcinomatosis is a form of advanced metastatic disease conferring poor prognosis, most commonly associated with melanoma, small cell lung cancer, and breast cancer. In rare cases it has been shown to be associated with stroke thought to be related to vasculopathy caused by tumoral infiltration of cerebral vasculature. We present a case of acute cerebellar infarction in a patient with metastatic breast cancer complicated by leptomeningeal carcinomatosis, admitted for worsening metastatic disease.

View Article and Find Full Text PDF

The aims of this study were to investigate the prevalence of cryofibrinogenemia in a cohort of patients with systemic sclerosis (SSc) regardless of clinical manifestations, who were admitted to our hospital and determine the associations among CF positivity, disease features and ongoing therapies. This was a monocentric and retrospective study. The inclusion criteria were a diagnosis of SSc (according to the ACR/EULAR 2013 classification criteria), regular administration of i.

View Article and Find Full Text PDF

Quantifying Pulmonary Microvascular Density in Mice Across Lobules.

J Vis Exp

January 2025

Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University;

The abnormal alternation of pulmonary angiogenesis is related to lung microvascular dysfunction and is deeply linked to vascular wall integrity, blood flow regulation, and gas exchange. In murine models, lung lobes exhibit significant differences in size, shape, location, and vascularization, yet existing methods lack consideration for these variations when quantifying microvascular density. This limitation hinders the comprehensive study of lung microvascular dysfunction and the potential remodeling of microvasculature circulation across different lobules.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!