Biomimetic Nanoparticles Carrying a Repolarization Agent of Tumor-Associated Macrophages for Remodeling of the Inflammatory Microenvironment Following Photothermal Therapy.

ACS Nano

CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, China, No.11 Zhongguancun Beiyitiao, Beijing 100190, China.

Published: September 2021

The complete regression of residual tumors after photothermal therapy (PTT) depends on the activation and recognition of the immune system. However, the inevitable local inflammation after PTT in residual tumor recruits abundant abnormal immune cells, especially the tumor-associated macrophages (TAMs) which further promote immune escape and survival of the remaining tumor cells, resulting in the tumor recurrence and progression. To solve this problem, herein we explored biomimetic nanoparticles carrying repolarization agent of TAMs to remodel the post-PTT inflammatory microenvironment. The polydopamine nanoparticles were used simultaneously as photothermal transduction agents to ablate tumor cells and the delivery vehicles for TMP195 which can repolarize the M2-like TAMs into an antitumor phenotype. In addition, a biomimetic decoration of macrophage membrane coating was designed to endow nanoparticles the ability to actively target the tumor site after PTT mediated by inflammation-mediated chemotaxis. In the breast tumor model, these biomimetic nanoparticles with immune-modulating ability significantly elevated the levels of M1-like TAMs, ultimately resulting in a tumor-elimination rate of 60%, increased from 10% after PTT. This synergistic treatment strategy of PTT and TAMs repolarization provides a promising approach to address the deteriorated tumor microenvironment after PTT and proposes a more effective way for combinational treatment option in clinic.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.1c05618DOI Listing

Publication Analysis

Top Keywords

biomimetic nanoparticles
12
nanoparticles carrying
8
carrying repolarization
8
repolarization agent
8
tumor-associated macrophages
8
inflammatory microenvironment
8
photothermal therapy
8
tumor cells
8
tumor
7
ptt
6

Similar Publications

In this study, the endophytic fungus Coniothyrium chaingmaiense-KUMBMDBT-25 was isolated from the healthy stem of Euphorbia tirucalli, mass cultivated by submerged fermentation, and extracted using ethyl acetate as a solvent. The extract was subjected to GC-MS analysis. The synthesized Con-AgNPs were characterized through various bioanalytical methods.

View Article and Find Full Text PDF

Following myocardial infarction (MI), the accumulation of CD86-positive macrophages in the ischemic injury zone leads to secondary myocardial damage. Precise pharmacological intervention targeting this process remains challenging. This study engineered a nanotherapeutic delivery system with CD86-positive macrophage-specific targeting and ultrasound-responsive release capabilities.

View Article and Find Full Text PDF

Recent Applications of Pillararene-Inspired Water-Soluble Hosts.

Chemistry

January 2025

Shanghai University, Chemistry, 99 Shang-da Road, 200444, Shanghai, CHINA.

Pillararenes and their derivatives have emerged in supramolecular chemistry as unique macrocycles for applications in host-guest chemistry, materials science and biomimetics. Many variations have been conceived and synthesized in recent years and in this review, we relate progress in water-soluble versions: leaning towerarenes, extended-pillararenes, biphenarenes, helicarenes and octopusarenes. These are applied in targeted drug delivery, selective uptake and release of aromatic guests, fabrication of gold/silver and mesoporous silica nanoparticles, cell imaging, pollutant separation, biomedicine (e.

View Article and Find Full Text PDF

Nano-Armed Limosilactobacillus reuteri for Enhanced Photo-Immunotherapy and Microbiota Tryptophan Metabolism against Colorectal Cancer.

Adv Sci (Weinh)

December 2024

Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology, Chengdu, 610054, China.

Despite being a groundbreaking approach to treating colorectal cancer (CRC), the efficacy of immunotherapy is significantly compromised by the immunosuppressive tumor microenvironment and dysbiotic intestinal microbiota. Here, leveraging the superior carrying capacity and innate immunity-stimulating property of living bacteria, a nanomedicine-engineered bacterium, LR-S-CD/CpG@LNP, with optical responsiveness, immune-stimulating activity, and the ability to regulate microbiota metabolome is developed. Immunoadjuvant (CpG) and carbon dot (CD) co-loaded plant lipid nanoparticles (CD/CpG@LNPs) are constructed and conjugated to the surface of Limosilactobacillus reuteri (LR) via reactive oxygen species (ROS)-responsive linkers.

View Article and Find Full Text PDF

Biomimetic gastric microtissue electrochemical biosensors for ovalbumin detection.

Biosens Bioelectron

March 2025

College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, Jiangsu, 210023, PR China. Electronic address:

An innovative integrated three-dimensional (3D) bioprinted gastric microtissue electrochemical biosensor was developed in this study for the detection of allergen ovalbumin (OVA). In this system, OVA triggers the release of histamine from gastric microtissue, which then undergoes a redox reaction on the electrode surface, leading to an increase in the peak current. Gelatin methacrylate hydrogel serves as a scaffold for the 3D culture of RBL-2H3 and PC-12 cells for partially restoring allergic reactions in the human body in vitro.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!