Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Supramolecular soft-templating approaches to mesoporous materials have revolutionized the generation of regular nanoarchitectures exhibiting unique features such as uniform pore structure with tunable dimensions, large surface area, and high pore volume, variability of composition, and/or ease of functionalization with a wide range of organo-functional groups or good hosts for the synthesis of nano-objects. One appealing concept in this field is the development of ordered mesoporous thin films as such a configuration has proven to be essential for various applications including separation, sensing, catalysis (electro and photo), energy conversion and storage, photonics, solar cells, photo- and electrochromism, and low- dielectric coatings for microelectronics, bio and nanobio devices, or biomimetic surfaces. Supported or free-standing mesoporous films are mostly prepared by evaporation induced self-assembly methods, thanks to their good processing capability and flexibility to manufacture mesostructured oxides and organic-inorganic hybrids films with periodically organized porosity.One important challenge is the control of pore orientation, especially in one-dimensional nanostructures, which is not straightforward from the above evaporation induced self-assembly methods. Accessibility of the pores represents another critical issue, which can be basically ensured in the event of effective interconnections between the pores, but the vertical alignment of mesopore channels will definitely offer the best configuration to secure the most efficient transfer processes through the mesoporous membranes. The orthogonal growth of mesochannels is however not thermodynamically favored, requiring the development of methods enabling self-organization through nonequilibrium states. We found that electrochemistry afforded a real boon to tackle this problem via the electrochemically assisted self-assembly (EASA) method, which not only provides a fast and versatile way to generate highly ordered and hexagonally packed mesopore channels but also constitutes a real platform for the development of functionalized oriented films carrying a wide range of organo-functional groups of adjustable composition and properties.This Account introduces the EASA concept and discusses its development along with the significant progress made from its discovery, notably in view of recent advances on the functionalization of oriented mesoporous silica films, which expand their fields of application. EASA is based on the combination of electrochemically triggered pH-induced polycondensation of silica precursors with electrochemical interfacial surfactant templating, leading to the very fast (a few seconds) growth of vertically aligned silica walls through self-assembly around surfactant hemimicelles transiently formed onto the underlying support. This method benefits from the possibility to deposit uniform thin films onto surfaces of different natures and complex morphologies including at the microscale. From this discovery, our research expanded to cover domains beyond the simple production of bare silica films, turning to the challenge of incorporation and exploitation of organo-functional groups or nanofilaments. So far, the great majority of methods developed for the functionalization of mesoporous silica is based on postsynthesis grafting or co-condensation approaches, which suffer from serious limitations with oriented films (pore blocking, lack of ordering). We demonstrated the uniqueness of EASA combined with click chemistry to afford a versatile and universal route to oriented mesoporous films bearing organo-functional groups of multiple composition. This opened perspectives for future developments and applications, some of which (sensing, permselective coatings, energy storage, electrocatalysis, electrochromism) are also considered in this Account.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.accounts.1c00233 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!