The Anionic Pathway in the Nickel-Catalysed Cross-Coupling of Aryl Ethers.

Angew Chem Int Ed Engl

Departement für Chemie, Biochemie und Pharmazie, Universität Bern, Freiestrasse 3, 3012, Bern, Switzerland.

Published: November 2021

AI Article Synopsis

Article Abstract

The Ni-catalysed cross-coupling of aryl ethers is a powerful method to forge new C-C and C-heteroatom bonds. However, the inert C(sp )-O bond means that a canonical mechanism that relies on the oxidative addition of the aryl ether to a Ni centre is thermodynamically and kinetically unfavourable, which suggests that alternative mechanisms may be involved. Here, we provide spectroscopic and structural insights into the anionic pathway, which relies on the formation of electron-rich hetero-bimetallic nickelates by adding organometallic nucleophiles to a Ni centre. Assessing the rich co-complexation chemistry between Ni(COD) and PhLi has led to the structures and solution-state chemistry of a diverse family of catalytically competent lithium nickelates being unveiled. In addition, we demonstrate dramatic solvent and donor effects, which suggest that the cooperative activation of the aryl ether substrate by Ni -ate complexes plays a key role in the catalytic cycle.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8596537PMC
http://dx.doi.org/10.1002/anie.202110785DOI Listing

Publication Analysis

Top Keywords

anionic pathway
8
cross-coupling aryl
8
aryl ethers
8
aryl ether
8
pathway nickel-catalysed
4
nickel-catalysed cross-coupling
4
aryl
4
ethers ni-catalysed
4
ni-catalysed cross-coupling
4
ethers powerful
4

Similar Publications

Fluoride (F), as a natural element found in a wide range of sources such as water and certain foods, has been proven to be beneficial in preventing dental caries, but concerns have been raised regarding its potential deleterious effects on overall health. Sodium fluoride (NaF), another form of F, has the ability to accumulate in reproductive organs and interfere with hormonal regulation and oxidative stress pathways, contributing to reproductive toxicity. While the exact mechanisms of F-induced reproductive toxicity are not fully understood, this review aims to elucidate the mechanisms involved in testicular and ovarian injury.

View Article and Find Full Text PDF

The development of highly active and stable cathodes in alkaline solutions is crucial for promoting the commercialization of anion exchange membrane (AEM) electrolyzers, yet it remains a significant challenge. Herein, we synthesized atomically dispersed CoP moieties (CoP-SSC) immobilized on ultrathin carbon nanosheets via a phosphidation exfoliation strategy at medium temperature. The thermodynamic formation process of the Co-P moieties was elucidated using X-ray absorption spectroscopy (XAS) and theoretical calculations.

View Article and Find Full Text PDF

Drought stress severely damages wheat growth and photosynthesis, and plants at the grain-filling stage are the most sensitive to drought throughout the entire period of development. Exogenous spraying of sodium nitroprusside (SNP) can alleviate the damage to wheat caused by drought stress, but the mechanism regulating the proline pathway remains unknown. Two wheat cultivars, drought-sensitive Zhoumai 18 and drought-tolerant Zhengmai 1860, were used as materials when the plants were cultivated to the grain-filling stage.

View Article and Find Full Text PDF

Hybridization Design and High-Throughput Screening of Peptides with Immunomodulatory and Antioxidant Activities.

Int J Mol Sci

January 2025

Laboratory of Feed Biotechnology, State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.

With the increasing recognition of the role of immunomodulation and oxidative stress in various diseases, designing peptides with both immunomodulatory and antioxidant activities has emerged as a promising therapeutic strategy. In this study, a hybridization design was applied as a powerful method to obtain multifunctional peptides. A total of 40 peptides with potential immunomodulatory and antioxidant activities were designed and screened.

View Article and Find Full Text PDF

VDAC1: A Key Player in the Mitochondrial Landscape of Neurodegeneration.

Biomolecules

December 2024

Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O. Box 653, Beer Sheva 84105, Israel.

Voltage-Dependent Anion Channel 1 (VDAC1) is a mitochondrial outer membrane protein that plays a crucial role in regulating cellular energy metabolism and apoptosis by mediating the exchange of ions and metabolites between mitochondria and the cytosol. Mitochondrial dysfunction and oxidative stress are central features of neurodegenerative diseases. The pivotal functions of VDAC1 in controlling mitochondrial membrane permeability, regulating calcium balance, and facilitating programmed cell death pathways, position it as a key determinant in the delicate balance between neuronal viability and degeneration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!