Objectives: The discrepancy between supply and demand of organ has led to an increased utilization of steatotic liver for liver transplantation (LT). Hepatic steatosis, however, is a major risk factor for graft failure due to increased susceptibility to ischaemia-reperfusion (I/R) injury during transplantation.
Materials And Methods: To assess the plasticity and phenotype of immune cells within the microenvironment of steatotic liver graft at single-cell level, single-cell RNA-sequencing (scRNA-Seq) was carried out on 23 675 cells from transplanted rat livers. Bioinformatic analyses and multiplex immunohistochemistry were performed to assess the functional properties, transcriptional regulation, phenotypic switching and cell-cell interactions of different cell subtypes.
Results: We have identified 11 different cell types in transplanted livers and found that the highly complex ecosystem was shaped by myeloid-derived cell subsets that transit between different states and interact mutually. Notably, a pro-inflammatory phenotype of Kupffer cells (KCs) with high expression of colony-stimulating factor 3 (CSF3) that was enriched in transplanted steatotic livers was potentially participated in fatty graft injury. We have also detected a subset of dendritic cells (DCs) with highly expressing XCR1 that was correlated with CD8 T cells, mediating the severer steatotic liver damage by I/R injury.
Conclusions: The findings of our study provide new insight into the mechanisms by which steatosis exacerbates liver damage from I/R injury. Interventions based on these observations create opportunities in attenuating fatty liver graft injury and expanding the donor pool.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8488562 | PMC |
http://dx.doi.org/10.1111/cpr.13116 | DOI Listing |
Curr Cardiol Rep
January 2025
Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria.
Purpose Of Review: Metabolic dysfunction-associated steatotic liver disease (MASLD) is the most common chronic liver disease, characterized by hepatic steatosis with at least one cardiometabolic risk factor. Patients with MASLD are at increased risk for the occurrence of cardiovascular events. Within this review article, we aimed to provide an update on the pathophysiology of MASLD, its interplay with cardiovascular disease, and current treatment strategies.
View Article and Find Full Text PDFAliment Pharmacol Ther
January 2025
MASLD Research Center, Division of Gastroenterology and Hepatology, University of California at San Diego, La Jolla, California, USA.
Background: The current subclassification of steatotic liver disease (SLD) relies on validated questionnaires, such as Alcohol Use Disorders Identification Test (AUDIT) and Lifetime Drinking History (LDH), which, while useful, are impractical and lack precision for their use in routine clinical practice. Phosphatidylethanol (PEth) is a quantitative, objective alcohol biomarker with high sensitivity and specificity.
Aims: To assess the diagnostic accuracy of PEth for differentiating metabolic dysfunction and alcohol-associated liver disease (MetALD) from metabolic dysfunction-associated steatotic liver disease (MASLD) in a large, population-based, prospective, multiethnic cohort of individuals with overweight or obesity.
J Hepatol
January 2025
Division of Endocrinology, Diabetes and Metabolism, University of Florida, Gainesville, Florida, United States of America. Electronic address:
Background & Aims: Lanifibranor is a pan-PPAR agonist that improves glucose/lipid metabolism and reverses steatohepatitis and fibrosis in adults with MASH. We tested its effect on insulin resistance at the level of different target tissues in relationship to change in intrahepatic triglyceride (IHTG) content.
Methods: This phase 2, single center, study randomized (1:1) 38 patients with T2D and MASLD to receive lanifibranor 800 mg or placebo for 24 weeks.
Endocrinology
January 2025
Department of Pediatrics, Divisions of Neonatology & Developmental Biology and Endocrinology, Neonatal Research Center of the UCLA Children's Discovery & Innovation Institute at the David Geffen School of Medicine at UCLA, Los Angeles, California 90095-1752.
To determine the basis for perinatal nutritional mismatch causing metabolic dysfunction associated steatotic liver disease (MASLD) and diabetes mellitus, we examined adult phenotype, hepatic transcriptome, and pancreatic β-islet function. In prenatal caloric restricted rat with intrauterine growth restriction (IUGR) and postnatal exposure to high fat with fructose (HFhf) or high carbohydrate (RC), we investigated male and female IUGR-Hfhf and IUGR-RC, versus HFhf and CON offspring. Males more than females displayed adiposity, glucose intolerance, insulin resistance, hyperlipidemia, hepatomegaly with hepatic steatosis.
View Article and Find Full Text PDFSci Adv
January 2025
Cellular Homeostasis and Recycling, Danish Cancer Institute, DK-2100 Copenhagen, Denmark.
Nutrient deprivation is a major trigger of autophagy, a conserved quality control and recycling process essential for cellular and tissue homeostasis. In a high-content image-based screen of the human ubiquitome, we here identify the E3 ligase Pellino 3 (PELI3) as a crucial regulator of starvation-induced autophagy. Mechanistically, PELI3 localizes to autophagic membranes, where it interacts with the ATG8 proteins through an LC3-interacting region (LIR).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!