Aims: Congenital long-QT syndromes (cLQTS) or drug-induced long-QT syndromes (diLQTS) can cause torsade de pointes (TdP), a life-threatening ventricular arrhythmia. The current strategy for the identification of drugs at the high risk of TdP relies on measuring the QT interval corrected for heart rate (QTc) on the electrocardiogram (ECG). However, QTc has a low positive predictive value.

Methods And Results: We used convolutional neural network (CNN) models to quantify ECG alterations induced by sotalol, an IKr blocker associated with TdP, aiming to provide new tools (CNN models) to enhance the prediction of drug-induced TdP (diTdP) and diagnosis of cLQTS. Tested CNN models used single or multiple 10-s recordings/patient using 8 leads or single leads in various cohorts: 1029 healthy subjects before and after sotalol intake (n = 14 135 ECGs); 487 cLQTS patients (n = 1083 ECGs: 560 type 1, 456 type 2, 67 type 3); and 48 patients with diTdP (n = 1105 ECGs, with 147 obtained within 48 h of a diTdP episode). CNN models outperformed models using QTc to identify exposure to sotalol [area under the receiver operating characteristic curve (ROC-AUC) = 0.98 vs. 0.72, P ≤ 0.001]. CNN models had higher ROC-AUC using multiple vs. single 10-s ECG (P ≤ 0.001). Performances were comparable for 8-lead vs. single-lead models. CNN models predicting sotalol exposure also accurately detected the presence and type of cLQTS vs. healthy controls, particularly for cLQT2 (AUC-ROC = 0.9) and were greatest shortly after a diTdP event and declining over time (P ≤ 0.001), after controlling for QTc and intake of culprit drugs. ECG segment analysis identified the J-Tpeak interval as the best discriminator of sotalol intake.

Conclusion: CNN models applied to ECGs outperform QTc measurements to identify exposure to drugs altering the QT interval, congenital LQTS, and are greatest shortly after a diTdP episode.

Download full-text PDF

Source
http://dx.doi.org/10.1093/eurheartj/ehab588DOI Listing

Publication Analysis

Top Keywords

cnn models
28
models
9
prediction drug-induced
8
long-qt syndromes
8
ditdp episode
8
identify exposure
8
greatest shortly
8
shortly ditdp
8
cnn
7
qtc
5

Similar Publications

Protein succinylation, a post-translational modification wherein a succinyl group (-CO-CH₂-CH₂-CO-) attaches to lysine residues, plays a critical regulatory role in cellular processes. Dysregulated succinylation has been implicated in the onset and progression of various diseases, including liver, cardiac, pulmonary, and neurological disorders. However, identifying succinylation sites through experimental methods is often labor-intensive, costly, and technically challenging.

View Article and Find Full Text PDF

A discrete convolutional network for entity relation extraction.

Neural Netw

January 2025

State Key Laboratory of Public Big Data, Guizhou University, 550025, China; Engineering Research Center of Text Computing & Cognitive Intelligence, Ministry of Education, Guizhou University, 550025, China; College of Computer Science and Technology, Guizhou University, 550025, China. Electronic address:

Relation extraction independently verifies all entity pairs in a sentence to identify predefined relationships between named entities. Because these entity pairs share the same contextual features of a sentence, they lead to a complicated semantic structure. To distinguish semantic expressions between relation instances, manually designed rules or elaborate deep architectures are usually applied to learn task-relevant representations.

View Article and Find Full Text PDF

Rad4XCNN: A new agnostic method for post-hoc global explanation of CNN-derived features by means of Radiomics.

Comput Methods Programs Biomed

January 2025

Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND), University of Palermo, Palermo, 90127, Italy. Electronic address:

Background And Objective: In recent years, machine learning-based clinical decision support systems (CDSS) have played a key role in the analysis of several medical conditions. Despite their promising capabilities, the lack of transparency in AI models poses significant challenges, particularly in medical contexts where reliability is a mandatory aspect. However, it appears that explainability is inversely proportional to accuracy.

View Article and Find Full Text PDF

Classification of α-thalassemia data using machine learning models.

Comput Methods Programs Biomed

January 2025

Operations Research Group, Department of Materials and Production, Aalborg University, Aalborg, 9220, Denmark.

Background: Around 7% of the global population has congenital hemoglobin disorders, with over 300,000 new cases of α-thalassemia annually. Diagnosis is costly and inaccurate in low-income regions, often relying on complete blood count (CBC) tests. This study employs machine learning (ML) to classify α-thalassemia traits based on gender and CBC, exploring the effects of grouping silent- and non-carriers.

View Article and Find Full Text PDF

Bioinspired Smart Triboelectric Soft Pneumatic Actuator-Enabled Hand Rehabilitation Robot.

Adv Mater

January 2025

Division of Intelligent and Biomechanical Systems, State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Haidian, Beijing, 100084, China.

Quantitative assessment for post-stroke spasticity remains a significant challenge due to the encountered variable resistance during passive stretching, which can lead to the widely used modified Ashworth scale (MAS) for spasticity assessment depending heavily on rehabilitation physicians. To address these challenges, a high-force-output triboelectric soft pneumatic actuator (TENG-SPA) inspired by a lobster tail is developed. The bioinspired TENG-SPA can generate approximately 20 N at 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!