Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Propensity score matching is widely used to determine the effects of treatments in observational studies. Competing risk survival data are common to medical research. However, there is a paucity of propensity score matching studies related to competing risk survival data with missing causes of failure. In this study, we provide guidelines for estimating the treatment effect on the cumulative incidence function when using propensity score matching on competing risk survival data with missing causes of failure. We examined the performances of different methods for imputing the data with missing causes. We then evaluated the gain from the missing cause imputation in an extensive simulation study and applied the proposed data imputation method to the data from a study on the risk of hepatocellular carcinoma in patients with chronic hepatitis B and chronic hepatitis C.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/09622802211037075 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!