Here we report a reaction of the fullerene derivatives CArCl, which enables the substitution of Cl with thiophene residues and the formation of the novel family of -symmetrical C fullerene derivatives with six functional addends CArTh. The discovered reaction provided a straightforward approach to the synthesis of previously inaccessible multifunctional water-soluble fullerene derivatives, including the compounds with antiviral activity against human immunodeficiency and influenza viruses.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.orglett.1c02623 | DOI Listing |
Adv Sci (Weinh)
December 2024
CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, P. R. China.
Owing to their attractive antitumor effects, aminated fullerene derivatives are emerging as promising therapeutic drugs for cancer. However, their in vivo applications are severely limited due to cation toxicity. To address this problem, human heavy chain ferritin (HFn), possessing natural biocompatibility is utilized, to develop a novel supramolecular assembly drug delivery system.
View Article and Find Full Text PDFNanotoxicology
December 2024
Department of Systems Engineering and Biology, Silesian University of Technology, Faculty of Automatic Control, Electronics and Computer Science, Gliwice, Poland.
Fullerenes (C, C) as carbon nanomaterials can enter the environment through natural processes and anthropogenic activities, while synthetic fullerenes are commonly used in medicine in targeted therapies in association with antibodies, or anticancer and antimicrobial drugs. As the nanoparticles, they can pass through cell membranes and organelles and accumulate in the entire cytoplasm. The red-fluorescent, water-soluble [70]fullerene derivative C-OMe-ser, which produces reactive oxygen species upon illumination with an appropriate wavelength, passed into the cytoplasm of the middle region in the digestive system.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
December 2024
School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Jilin Provincial International Joint Research Center of Photo-functional Materials and Chemistry, Changchun 130022, China; State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130021, China. Electronic address:
The power conversion efficiency (PCE) of ternary all-small-molecule organic solar cells (T-ASM-OSCs) differs significantly from that of the polymer systems (2 %), and the role of third component remains unclear. The electron donor of coumarin derivatives with simple structure and strong and broad light absorption has high PCE for T-ASM-OSCs composed of non-fullerene acceptors (Y6 and DBTBT-IC). Here, we calculated the electronic structure and interfacial properties of the binary C1-CN:Y6 and ternary C1-CN:Y6:DBTBT-IC systems using molecular dynamic (MD) simulations and density functional theory (DFT) to explore the role of the third component (DBTBT-IC).
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
December 2024
Research Centre for Medical Genetics, 115522 Moscow, Russia.
Background: There is a growing interest in exploring the biological characteristics of nanoparticles and exploring their potential applications. However, there is still a lack of research into the potential genotoxicity of fullerene derivatives and their impact on gene expression in human cells. In this study, we investigated the effects of a water-soluble fullerene derivative, C60[C6H4SCH2COOK]5H (F1), on human embryonic lung fibroblasts (HELF).
View Article and Find Full Text PDFBioorg Chem
December 2024
Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry of RAS, Semenov Prospect 1, Chernogolovka 142432, Russia; Zhengzhou Research Institute of HIT, Longyuan East 7th 26, Jinshui District, Zhengzhou, Henan Province 450003, China. Electronic address:
Herein, we present the first experimental study of individual water-soluble fullerene derivatives proving their ability to inhibit SARS-CoV-2 in vitro. The initial screening allowed us to identify a few new compounds that have demonstrated pronounced antiviral activity with IC values as low as 390 nM and selectivity indexes reaching 214. Time-of-addition analysis and molecular docking results suggested that the viral protease and/or the spike protein are the most probable targets inhibited by the fullerene derivatives.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!